Source code for bokeh.models.filters
from __future__ import absolute_import
import inspect
from textwrap import dedent
from types import FunctionType
from ..core.properties import Bool, Dict, Either, Instance, Int, Seq, String
from ..model import Model
from ..util.dependencies import import_required
from ..util.compiler import nodejs_compile, CompilationError
[docs]class Filter(Model):
''' A Filter model represents a filtering operation that returns a row-wise subset of
data when applied to a ColumnDataSource.
'''
filter = Either(Seq(Int), Seq(Bool), help="""
A list that can be either integer indices or booleans representing a row-wise subset of data.
""")
def __init__(self, *args, **kw):
if len(args) == 1 and "filter" not in kw:
kw["filter"] = args[0]
super(Filter, self).__init__(**kw)
[docs]class IndexFilter(Filter):
''' An IndexFilter filters data by returning the subset of data at a given set of indices.
'''
indices = Seq(Int, help="""
A list of integer indices representing the subset of data to select.
""")
def __init__(self, *args, **kw):
if len(args) == 1 and "indices" not in kw:
kw["indices"] = args[0]
super(IndexFilter, self).__init__(**kw)
[docs]class BooleanFilter(Filter):
''' A BooleanFilter filters data by returning the subset of data corresponding to indices
where the values of the booleans array is True.
'''
booleans = Seq(Bool, help="""
A list of booleans indicating which rows of data to select.
""")
def __init__(self, *args, **kw):
if len(args) == 1 and "booleans" not in kw:
kw["booleans"] = args[0]
super(BooleanFilter, self).__init__(**kw)
[docs]class GroupFilter(Filter):
''' A GroupFilter represents the rows of a ColumnDataSource where the values of the categorical
column column_name match the group variable.
'''
column_name = String(help="""
The name of the column to perform the group filtering operation on.
""")
group = String(help="""
The value of the column indicating the rows of data to keep.
""")
def __init__(self, *args, **kw):
if len(args) == 2 and "column_name" not in kw and "group" not in kw:
kw["column_name"] = args[0]
kw["group"] = args[1]
super(GroupFilter, self).__init__(**kw)
[docs]class CustomJSFilter(Filter):
''' Filter data sources with a custom defined JavaScript function.
.. warning::
The explicit purpose of this Bokeh Model is to embed *raw JavaScript
code* for a browser to execute. If any part of the code is derived
from untrusted user inputs, then you must take appropriate care to
sanitize the user input prior to passing to Bokeh.
'''
[docs] @classmethod
def from_py_func(cls, func):
''' Create a CustomJSFilter instance from a Python function. The
fucntion is translated to JavaScript using PyScript.
The ``func`` function namespace will contain the variable ``source``
at render time. This will be the data source associated with the CDSView
that this filter is added to.
'''
if not isinstance(func, FunctionType):
raise ValueError('CustomJSFilter.from_py_func only accepts function objects.')
pyscript = import_required(
'flexx.pyscript',
dedent("""\
To use Python functions for CustomJSFilter, you need Flexx
'("conda install -c conda-forge flexx" or "pip install flexx")""")
)
argspec = inspect.getargspec(func)
default_names = argspec.args
default_values = argspec.defaults or []
if len(default_names) - len(default_values) != 0:
raise ValueError("Function may only contain keyword arguments.")
# should the following be all of the values need to be Models?
if default_values and not any([isinstance(value, Model) for value in default_values]):
raise ValueError("Default value must be a plot object.")
func_kwargs = dict(zip(default_names, default_values))
code = pyscript.py2js(func, 'filter') + 'return filter(%s);\n' % ', '.join(default_names)
return cls(code=code, args=func_kwargs)
[docs] @classmethod
def from_coffeescript(cls, code, args={}):
''' Create a CustomJSFilter instance from CoffeeScript snippets.
The function bodies are translated to JavaScript functions using node
and therefore require return statements.
The ``code`` function namespace will contain the variable ``source``
at render time. This will be the data source associated with the CDSView
that this filter is added to.
'''
compiled = nodejs_compile(code, lang="coffeescript", file="???")
if "error" in compiled:
raise CompilationError(compiled.error)
else:
return cls(code=compiled.code, args=args)
args = Dict(String, Instance(Model), help="""
A mapping of names to Bokeh plot objects. These objects are made
available to the callback code snippet as the values of named
parameters to the callback.
""")
code = String(default="", help="""
A snippet of JavaScript code to filter data contained in a columnar data source.
The code is made into the body of a function, and all of of the named objects in
``args`` are available as parameters that the code can use. The variable
``source`` will contain the data source that is associated with the CDSView this
filter is added to.
The code should either return the indices of the subset or an array of booleans
to use to subset data source rows.
Example:
.. code-block:: javascript
code = '''
var indices = [];
for (var i = 0; i <= source.data['some_column'].length; i++){
if (source.data['some_column'][i] == 'some_value') {
indices.push(i)
}
}
return indices;
'''
.. note:: Use ``CustomJS.from_coffeescript()`` for CoffeeScript source code.
""")