Source code for bokeh.transform

#-----------------------------------------------------------------------------
# Copyright (c) 2012 - 2017, Anaconda, Inc. All rights reserved.
#
# Powered by the Bokeh Development Team.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
''' Helper functions for applying client-side computations such as
transformations to data fields or ``ColumnDataSource`` expressions.

'''

#-----------------------------------------------------------------------------
# Boilerplate
#-----------------------------------------------------------------------------
from __future__ import absolute_import, division, print_function, unicode_literals

import logging
log = logging.getLogger(__name__)

from bokeh.util.api import general, dev ; general, dev

#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------

# Standard library imports

# External imports

# Bokeh imports
from .core.properties import expr, field
from .models.expressions import Stack
from .models.mappers import CategoricalColorMapper, LinearColorMapper, LogColorMapper
from .models.transforms import Dodge, Jitter

#-----------------------------------------------------------------------------
# Globals and constants
#-----------------------------------------------------------------------------

__all__ = (
    'dodge',
    'factor_cmap',
    'jitter',
    'linear_cmap',
    'log_cmap',
    'stack',
    'transform',
)

#-----------------------------------------------------------------------------
# General API
#-----------------------------------------------------------------------------

[docs]@general((1,0,0)) def dodge(field_name, value, range=None): ''' Create a ``DataSpec`` dict to apply a client-side ``Jitter`` transformation to a ``ColumnDataSource`` column. Args: field_name (str) : a field name to configure ``DataSpec`` with value (float) : the fixed offset to add to column data range (Range, optional) : a range to use for computing synthetic coordinates when necessary, e.g. a ``FactorRange`` when the column data is categorical (default: None) Returns: dict ''' return field(field_name, Dodge(value=value, range=range))
[docs]@general((1,0,0)) def factor_cmap(field_name, palette, factors, start=0, end=None, nan_color="gray"): ''' Create a ``DataSpec`` dict to apply a client-side ``CategoricalColorMapper`` transformation to a ``ColumnDataSource`` column. Args: field_name (str) : a field name to configure ``DataSpec`` with palette (seq[color]) : a list of colors to use for colormapping factors (seq) : a sequences of categorical factors corresponding to the palette start (int, optional) : a start slice index to apply when the column data has factors with multiple levels. (default: 0) end (int, optional) : an end slice index to apply when the column data has factors with multiple levels. (default: None) nan_color (color, optional) : a default color to use when mapping data from a column does not succeed (default: "gray") Returns: dict ''' return field(field_name, CategoricalColorMapper(palette=palette, factors=factors, start=start, end=end, nan_color=nan_color))
[docs]@general((1,0,0)) def jitter(field_name, width, mean=0, distribution="uniform", range=None): ''' Create a ``DataSpec`` dict to apply a client-side ``Jitter`` transformation to a ``ColumnDataSource`` column. Args: field_name (str) : a field name to configure ``DataSpec`` with width (float) : the width of the random distribition to apply mean (float, optional) : an offset to apply (default: 0) distribution (str, optional) : ``"uniform"`` or ``"normal"`` (default: ``"uniform"``) range (Range, optional) : a range to use for computing synthetic coordinates when necessary, e.g. a ``FactorRange`` when the column data is categorical (default: None) Returns: dict ''' return field(field_name, Jitter(mean=mean, width=width, distribution=distribution, range=range))
[docs]@general((1,0,0)) def linear_cmap(field_name, palette, low, high, low_color=None, high_color=None, nan_color="gray"): ''' Create a ``DataSpec`` dict to apply a client-side ``LinearColorMapper`` transformation to a ``ColumnDataSource`` column. Args: field_name (str) : a field name to configure ``DataSpec`` with palette (seq[color]) : a list of colors to use for colormapping low (float) : a minimum value of the range to map into the palette. Values below this are clamped to ``low``. high (float) : a maximum value of the range to map into the palette. Values above this are clamped to ``high``. low_color (color, optional) : color to be used if data is lower than ``low`` value. If None, values lower than ``low`` are mapped to the first color in the palette. (default: None) high_color (color, optional) : color to be used if data is higher than ``high`` value. If None, values higher than ``high`` are mapped to the last color in the palette. (default: None) nan_color (color, optional) : a default color to use when mapping data from a column does not succeed (default: "gray") ''' return field(field_name, LinearColorMapper(palette=palette, low=low, high=high, nan_color=nan_color, low_color=low_color, high_color=high_color))
[docs]@general((1,0,0)) def log_cmap(field_name, palette, low, high, low_color=None, high_color=None, nan_color="gray"): ''' Create a ``DataSpec`` dict to apply a client-side ``LogColorMapper`` transformation to a ``ColumnDataSource`` column. Args: field_name (str) : a field name to configure ``DataSpec`` with palette (seq[color]) : a list of colors to use for colormapping low (float) : a minimum value of the range to map into the palette. Values below this are clamped to ``low``. high (float) : a maximum value of the range to map into the palette. Values above this are clamped to ``high``. low_color (color, optional) : color to be used if data is lower than ``low`` value. If None, values lower than ``low`` are mapped to the first color in the palette. (default: None) high_color (color, optional) : color to be used if data is higher than ``high`` value. If None, values higher than ``high`` are mapped to the last color in the palette. (default: None) nan_color (color, optional) : a default color to use when mapping data from a column does not succeed (default: "gray") ''' return field(field_name, LogColorMapper(palette=palette, low=low, high=high, nan_color=nan_color, low_color=low_color, high_color=high_color))
[docs]@general((1,0,0)) def stack(*fields): ''' Create a Create a ``DataSpec`` dict to generate a ``Stack`` expression for a ``ColumnDataSource``. Examples: .. code-block:: python p.vbar(bottom=stack("sales", "marketing"), ... will generate a ``Stack`` that sums the ``"sales"`` and ``"marketing"`` columns of a data source, and use those values as the ``top`` coordinate for a ``VBar``. ''' return expr(Stack(fields=fields))
[docs]@general((1,0,0)) def transform(field_name, transform): ''' Create a ``DataSpec`` dict to apply an arbitrary client-side ``Transform`` to a ``ColumnDataSource`` column. Args: field_name (str) : A field name to configure ``DataSpec`` with transform (Transform) : A transforms to apply to that field Returns: dict ''' return field(field_name, transform)
#----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------