Bokeh includes several different types of annotations to allow users to add supplemental information to their visualizations.
Title annotations allow descriptive text to be rendered around the edges of a plot.
Title
When using bokeh.plotting or bokeh.Charts, the quickest way to add a basic title is to pass the text as the title parameter to Figure or any Chart function:
bokeh.plotting
bokeh.Charts
title
Figure
from bokeh.plotting import figure, output_file, show p = figure(title="Basic Title", plot_width=300, plot_height=300) p.circle([1,2], [3,4]) output_file("title.html") show(p)
The default title is normally on the top of a plot, aligned to the left. But which side of the plot the default title appears on can be controlled by the title_location parameter:
title_location
from bokeh.plotting import figure, output_file, show p = figure(title="Left Title", title_location="left", plot_width=300, plot_height=300) p.circle([1,2], [3,4]) output_file("title.html") show(p)
The default Title is accessible through the Plot.title property. Visual properties for font, border, background, and others can be set directly on .title. Here is an example that sets font and background properties as well as the title text and title alignment using .title:
Plot.title
.title
from bokeh.plotting import figure, output_file, show p = figure(plot_width=300, plot_height=300) p.circle([1,2], [3,4]) # configure visual properties on a plot's title attribute p.title.text = "Title With Options" p.title.align = "right" p.title.text_color = "orange" p.title.text_font_size = "25px" p.title.background_fill_color = "#aaaaee" output_file("title.html") show(p)
Note that the alignment is measured along the direction of text. For example for titles on the left side of a plot “left” will be in the lower corner.
In addition to the default title, it is possible to create and add additional Title objects to plots using the add_layout method of Plots:
add_layout
from bokeh.models import Title from bokeh.plotting import figure, output_file, show p = figure(title="Left Title", title_location="left", plot_width=300, plot_height=300) p.circle([1,2], [3,4]) # add extra titles with add_layout(...) p.add_layout(Title(text="Bottom Centered Title", align="center"), "below") output_file("title.html") show(p)
If a title and a sticky toolbar are set to the same side, they will occupy the same space:
from bokeh.plotting import figure, output_file, show p = figure(title="Top Title with Toolbar", toolbar_location="above", plot_width=600, plot_height=300) p.circle([1,2], [3,4]) output_file("title.html") show(p)
If the plot size is large enough, this can result in a more compact plot. However if the plot size is not large enough, the title and toolbar may visually overlap in way that is not desirable.
It is possible to create Legend annotations easily by specifying legend arguments to the glyph methods, when creating a plot.
Legend
To provide a simple explicit label for a glypy, pass the legend_label keyword argument:
legend_label
p.circle('x', 'y', legend_label="some label")
If multiple glyphs are given the same label, they will all be combined in to a single legend item with that label.
import numpy as np from bokeh.plotting import figure, output_file, show x = np.linspace(0, 4*np.pi, 100) y = np.sin(x) output_file("legend.html") p = figure() p.circle(x, y, legend_label="sin(x)") p.line(x, y, legend_label="sin(x)") p.line(x, 2*y, legend_label="2*sin(x)", line_dash=[4, 4], line_color="orange", line_width=2) p.square(x, 3*y, legend_label="3*sin(x)", fill_color=None, line_color="green") p.line(x, 3*y, legend_label="3*sin(x)", line_color="green") show(p)
It is often desirable to generate multiple legend items by grouping the values in a data source column. It is possible for Bokeh to perform such a grouping by passing the legend_group keyword argument to a glyph method:
legend_group
p.circle('x', 'y', legend_group="colname", source=source)
When this method is used, the grouping is performed immediately in Python, and subsequent Python code will be able to see the individual legend items in Legend.items property. If desired, these items can be re-arranged or modified.
Legend.items
from bokeh.io import show from bokeh.models import ColumnDataSource from bokeh.palettes import RdBu3 from bokeh.plotting import figure c1 = RdBu3[2] # red c2 = RdBu3[0] # blue source = ColumnDataSource(dict( x=[1, 2, 3, 4, 5, 6], y=[2, 1, 2, 1, 2, 1], color=[c1, c2, c1, c2, c1, c2], label=['hi', 'lo', 'hi', 'lo', 'hi', 'lo'] )) p = figure(x_range=(0, 7), y_range=(0, 3), plot_height=300, tools='save') # legend field matches the column in the source p.circle( x='x', y='y', radius=0.5, color='color', legend_group='label', source=source) show(p)
Note
To use this feature, a source argument must also be provided to the glyph method. Additionally, the column to be grouped must already be present in the data source at that point.
source
It is also possible to specify that the grouping should happen on the JavaScript side, in the browser. This may be desirable, e.g. if the grouping should happen on a column that is only computed on the JavaScript side.
p.circle('x', 'y', legend_field="colname", source=source)
In this case the Python code does not see multiple items in Legend.items. Instead there is only a single item that represents the grouping to perform in the browser.
from bokeh.io import show from bokeh.models import ColumnDataSource from bokeh.palettes import RdBu3 from bokeh.plotting import figure c1 = RdBu3[2] # red c2 = RdBu3[0] # blue source = ColumnDataSource(dict( x=[1, 2, 3, 4, 5, 6], y=[2, 1, 2, 1, 2, 1], color=[c1, c2, c1, c2, c1, c2], label=['hi', 'lo', 'hi', 'lo', 'hi', 'lo'] )) p = figure(x_range=(0, 7), y_range=(0, 3), plot_height=300, tools='save') # legend field matches the column in the source p.circle( x='x', y='y', radius=0.5, color='color', legend_field='label', source=source) show(p)
It is also possible to not specify any of the legend arguments, and manually build a Legend by hand. An example of this can be found in examples/models/file/legends.py:
Other times, it may be useful to explicitly tell Bokeh which index into a ColumnDataSource should be used when drawing a legend item. In particular, if you want to draw multiple legend items for “multi” glyphs such as MultiLine or Patches. This is accomplished by specifying an index for the legend item as shown below.
ColumnDataSource
MultiLine
Patches
index
from bokeh.models import Legend, LegendItem from bokeh.plotting import figure, show p = figure() r = p.multi_line([[1,2,3], [1,2,3]], [[1,3,2], [3,4,3]], color=["orange", "red"], line_width=4) legend = Legend(items=[ LegendItem(label="orange", renderers=[r], index=0), LegendItem(label="red", renderers=[r], index=1), ]) p.add_layout(legend) show(p)
It’s also possible to configure legends to be interactive, so that clicking or tapping on legend entries affects the corresponding glyph visibility. See the Interactive Legends section of the User’s Guide for more information and examples.
Interactive Legends features currently work on the first, “per-glyph” style legends. Legends that are created by specifying a column to automatically group do no yet support interactive features.
A ColorBar can be created using a ColorMapper instance, which contains a color palette. Both on- and off-plot color bars are supported; the desired location can be specified when adding the ColorBar to the plot.
ColorBar
ColorMapper
This example depends on the open-source NumPy library in order to generate demonstration data.
import numpy as np from bokeh.models import ColorBar, LogColorMapper, LogTicker from bokeh.plotting import figure, output_file, show output_file('color_bar.html') def normal2d(X, Y, sigx=1.0, sigy=1.0, mux=0.0, muy=0.0): z = (X-mux)**2 / sigx**2 + (Y-muy)**2 / sigy**2 return np.exp(-z/2) / (2 * np.pi * sigx * sigy) X, Y = np.mgrid[-3:3:100j, -2:2:100j] Z = normal2d(X, Y, 0.1, 0.2, 1.0, 1.0) + 0.1*normal2d(X, Y, 1.0, 1.0) image = Z * 1e6 color_mapper = LogColorMapper(palette="Viridis256", low=1, high=1e7) plot = figure(x_range=(0,1), y_range=(0,1), toolbar_location=None) plot.image(image=[image], color_mapper=color_mapper, dh=[1.0], dw=[1.0], x=[0], y=[0]) color_bar = ColorBar(color_mapper=color_mapper, ticker=LogTicker(), label_standoff=12, border_line_color=None, location=(0,0)) plot.add_layout(color_bar, 'right') show(plot)
Arrow annotations can be used to connect glyphs and label annotations or to simply highlight plot regions. Arrows are compound annotations, meaning that their start and end attributes are themselves other ArrowHead annotations. By default, the Arrow annotation is one-sided with the end set as an OpenHead-type arrow head (an open-backed wedge style) and the start property set to None. Double-sided arrows can be created by setting both the start and end properties as appropriate ArrowHead subclass instances.
Arrow
start
end
ArrowHead
OpenHead
None
Arrows have standard line properties to set the color and appearance of the arrow shaft:
my_arrow.line_color = "blue" my_arrow.line_alpha = 0.6
Arrows may also be configured to refer to additional non-default x- or y-ranges with the x_range and y_range properties, in the same way as Twin Axes.
x_range
y_range
Additionally any arrow head objects in start or end have a size property to control how big the arrow head is, as well as both line and fill properties. The line properties control the outline of the arrow head, and the fill properties control the interior of the arrow head (if applicable).
size
from bokeh.models import Arrow, NormalHead, OpenHead, VeeHead from bokeh.plotting import figure, output_file, show output_file("arrow.html", title="arrow.py example") p = figure(plot_width=600, plot_height=600) p.circle(x=[0, 1, 0.5], y=[0, 0, 0.7], radius=0.1, color=["navy", "yellow", "red"], fill_alpha=0.1) p.add_layout(Arrow(end=OpenHead(line_color="firebrick", line_width=4), x_start=0, y_start=0, x_end=1, y_end=0)) p.add_layout(Arrow(end=NormalHead(fill_color="orange"), x_start=1, y_start=0, x_end=0.5, y_end=0.7)) p.add_layout(Arrow(end=VeeHead(size=35), line_color="red", x_start=0.5, y_start=0.7, x_end=0, y_end=0)) show(p)
A Band will create a dimensionally-linked “stripe”, either located in data or screen coordinates. One common use for the Band annotation is to indicate uncertainty related to a series of measurements.
Band
import numpy as np import pandas as pd from bokeh.models import Band, ColumnDataSource from bokeh.plotting import figure, output_file, show output_file("band.html", title="band.py example") # Create some random data x = np.random.random(2500) * 140 - 20 y = np.random.normal(size=2500) * 2 + 5 df = pd.DataFrame(data=dict(x=x, y=y)).sort_values(by="x") sem = lambda x: x.std() / np.sqrt(x.size) df2 = df.y.rolling(window=100).agg({"y_mean": np.mean, "y_std": np.std, "y_sem": sem}) df2 = df2.fillna(method='bfill') df = pd.concat([df, df2], axis=1) df['lower'] = df.y_mean - df.y_std df['upper'] = df.y_mean + df.y_std source = ColumnDataSource(df.reset_index()) TOOLS = "pan,wheel_zoom,box_zoom,reset,save" p = figure(tools=TOOLS) p.scatter(x='x', y='y', line_color=None, fill_alpha=0.3, size=5, source=source) band = Band(base='x', lower='lower', upper='upper', source=source, level='underlay', fill_alpha=1.0, line_width=1, line_color='black') p.add_layout(band) p.title.text = "Rolling Standard Deviation" p.xgrid[0].grid_line_color=None p.ygrid[0].grid_line_alpha=0.5 p.xaxis.axis_label = 'X' p.yaxis.axis_label = 'Y' show(p)
A BoxAnnotation can be linked to either data or screen coordinates in order to emphasize specific plot regions. By default, box annotation dimensions (e.g. left or top) default will extend the annotation to the edge of the plot area.
BoxAnnotation
left
top
from bokeh.models import BoxAnnotation from bokeh.plotting import figure, output_file, show from bokeh.sampledata.glucose import data output_file("box_annotation.html", title="box_annotation.py example") TOOLS = "pan,wheel_zoom,box_zoom,reset,save" #reduce data size data = data.loc['2010-10-06':'2010-10-13'] p = figure(x_axis_type="datetime", tools=TOOLS) p.line(data.index.to_series(), data['glucose'], line_color="gray", line_width=1, legend_label="glucose") low_box = BoxAnnotation(top=80, fill_alpha=0.1, fill_color='red') mid_box = BoxAnnotation(bottom=80, top=180, fill_alpha=0.1, fill_color='green') high_box = BoxAnnotation(bottom=180, fill_alpha=0.1, fill_color='red') p.add_layout(low_box) p.add_layout(mid_box) p.add_layout(high_box) p.title.text = "Glucose Range" p.xgrid[0].grid_line_color=None p.ygrid[0].grid_line_alpha=0.5 p.xaxis.axis_label = 'Time' p.yaxis.axis_label = 'Value' show(p)
Labels are text elements that can be used to annotate either glyphs or plot regions.
To create a single text label, use the Label annotation. This annotation is configured with a text property containing the text to be displayed, as well as x and y properties to set the position (in screen or data space units). Additionally a render mode "canvas" or "css" may be specified. Finally, labels have text, border_line, and background_fill properties. These control the visual appearance of the text, as well as the border and background of the bounding box for the text:
Label
text
x
y
"canvas"
"css"
border_line
background_fill
Label(x=70, y=70, x_units='screen', text='Some Stuff', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0)
To create several labels at once, possibly to easily annotate another existing glyph, use the LabelSet annotation, which is configured with a data source, with the text and x and y positions are given as column names. LabelSet objects can also have x_offset and y_offset, which specify a distance in screen space units to offset the label positions from x and y. Finally the render level may be controlled with the level property, to place the label above or underneath other renderers:
LabelSet
x_offset
y_offset
level
LabelSet(x='x', y='y', text='names', level='glyph', x_offset=5, y_offset=5, source=source)
The following example illustrates the use of both:
from bokeh.models import ColumnDataSource, Label, LabelSet, Range1d from bokeh.plotting import figure, output_file, show output_file("label.html", title="label.py example") source = ColumnDataSource(data=dict(height=[66, 71, 72, 68, 58, 62], weight=[165, 189, 220, 141, 260, 174], names=['Mark', 'Amir', 'Matt', 'Greg', 'Owen', 'Juan'])) p = figure(title='Dist. of 10th Grade Students at Lee High', x_range=Range1d(140, 275)) p.scatter(x='weight', y='height', size=8, source=source) p.xaxis[0].axis_label = 'Weight (lbs)' p.yaxis[0].axis_label = 'Height (in)' labels = LabelSet(x='weight', y='height', text='names', level='glyph', x_offset=5, y_offset=5, source=source, render_mode='canvas') citation = Label(x=70, y=70, x_units='screen', y_units='screen', text='Collected by Luke C. 2016-04-01', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) p.add_layout(labels) p.add_layout(citation) show(p)
Slope annotations are lines which may be sloped and extend to the edge of the plot area.
Slope
import numpy as np from bokeh.models import Slope from bokeh.plotting import figure, output_file, show output_file("slope.html", title="slope.py example") # linear equation parameters gradient = 2 y_intercept = 10 # create random data xpts = np.arange(0, 20) ypts = gradient * xpts + y_intercept + np.random.normal(0, 4, 20) p = figure(plot_width=450, plot_height=450, y_range=(0, 1.1 * max(ypts))) p.circle(xpts, ypts, size=5, color="skyblue") slope = Slope(gradient=gradient, y_intercept=y_intercept, line_color='orange', line_dash='dashed', line_width=3.5) p.add_layout(slope) p.yaxis.axis_label = 'y' p.xaxis.axis_label = 'x' show(p)
Span annotations are lines that have a single dimension (width or height) and extend to the edge of the plot area.
Span
import time from datetime import datetime as dt from bokeh.models import Span from bokeh.plotting import figure, output_file, show from bokeh.sampledata.daylight import daylight_warsaw_2013 output_file("span.html", title="span.py example") p = figure(x_axis_type="datetime", y_axis_type="datetime") p.line(daylight_warsaw_2013.Date, daylight_warsaw_2013.Sunset, line_dash='solid', line_width=2, legend_label="Sunset") p.line(daylight_warsaw_2013.Date, daylight_warsaw_2013.Sunrise, line_dash='dotted', line_width=2, legend_label="Sunrise") start_date = time.mktime(dt(2013, 3, 31, 2, 0, 0).timetuple())*1000 daylight_savings_start = Span(location=start_date, dimension='height', line_color='green', line_dash='dashed', line_width=3) p.add_layout(daylight_savings_start) end_date = time.mktime(dt(2013, 10, 27, 3, 0, 0).timetuple())*1000 daylight_savings_end = Span(location=end_date, dimension='height', line_color='red', line_dash='dashed', line_width=3) p.add_layout(daylight_savings_end) p.title.text = "2013 Sunrise and Sunset times in Warsaw" p.yaxis.axis_label = 'Time of Day' show(p)
A Whisker will create a dimensionally-linked “stem”, either located in data or screen coordinates. Indicating error or uncertainty for measurements at a single point would be one common use for the Whisker annotation.
Whisker
from bokeh.models import ColumnDataSource, Whisker from bokeh.plotting import figure, show from bokeh.sampledata.autompg import autompg as df colors = ["red", "olive", "darkred", "goldenrod", "skyblue", "orange", "salmon"] p = figure(plot_width=600, plot_height=300, title="Years vs mpg with Quartile Ranges") base, lower, upper = [], [], [] for i, year in enumerate(list(df.yr.unique())): year_mpgs = df[df['yr'] == year]['mpg'] mpgs_mean = year_mpgs.mean() mpgs_std = year_mpgs.std() lower.append(mpgs_mean - mpgs_std) upper.append(mpgs_mean + mpgs_std) base.append(year) source_error = ColumnDataSource(data=dict(base=base, lower=lower, upper=upper)) p.add_layout( Whisker(source=source_error, base="base", upper="upper", lower="lower") ) for i, year in enumerate(list(df.yr.unique())): y = df[df['yr'] == year]['mpg'] color = colors[i % len(colors)] p.circle(x=year, y=y, color=color) show(p)