Source code for bokeh.core.has_props

#-----------------------------------------------------------------------------
# Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors.
# All rights reserved.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
''' Provide a base class for objects that can have declarative, typed,
serializable properties.

.. note::
    These classes form part of the very low-level machinery that implements
    the Bokeh model and property system. It is unlikely that any of these
    classes or their methods will be applicable to any standard usage or to
    anyone who is not directly developing on Bokeh's own infrastructure.

'''

#-----------------------------------------------------------------------------
# Boilerplate
#-----------------------------------------------------------------------------
from __future__ import annotations

import logging # isort:skip
log = logging.getLogger(__name__)

#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------

# Standard library imports
import difflib
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Mapping,
    NoReturn,
    Set,
    Tuple,
    Type,
    TypeVar,
    Union,
    overload,
)
from warnings import warn

# External imports
from typing_extensions import Literal, TypedDict

if TYPE_CHECKING:
    F = TypeVar("F", bound=Callable[..., Any])
    def lru_cache(arg: int | None) -> Callable[[F], F]: ...
else:
    from functools import lru_cache

# Bokeh imports
from ..util.string import append_docstring, nice_join
from .property.descriptor_factory import PropertyDescriptorFactory
from .property.descriptors import PropertyDescriptor, UnsetValueError
from .property.override import Override
from .property.singletons import Undefined
from .property.wrappers import PropertyValueContainer
from .types import ID, JSON, Unknown

if TYPE_CHECKING:
    from ..client.session import ClientSession
    from ..document.document import StaticSerializer
    from ..server.session import ServerSession
    from .property.bases import Property
    from .property.dataspec import DataSpec

#-----------------------------------------------------------------------------
# Globals and constants
#-----------------------------------------------------------------------------

__all__ = (
    'abstract',
    'HasProps',
    'MetaHasProps',
)

#-----------------------------------------------------------------------------
# General API
#-----------------------------------------------------------------------------

#-----------------------------------------------------------------------------
# Dev API
#-----------------------------------------------------------------------------

if TYPE_CHECKING:
    Setter = Union[ClientSession, ServerSession]

C = TypeVar("C", bound=Type["HasProps"])

[docs]def abstract(cls: C) -> C: ''' A decorator to mark abstract base classes derived from |HasProps|. ''' if not issubclass(cls, HasProps): raise TypeError(f"{cls.__name__} is not a subclass of HasProps") cls.__doc__ = append_docstring(cls.__doc__, _ABSTRACT_ADMONITION) return cls
def is_DataModel(cls: Type[HasProps]) -> bool: from ..model import DataModel return issubclass(cls, HasProps) and getattr(cls, "__data_model__", False) and cls != DataModel def _overridden_defaults(class_dict: Dict[str, Any]) -> Dict[str, Unknown]: overridden_defaults: Dict[str, Unknown] = {} for name, prop in tuple(class_dict.items()): if isinstance(prop, Override): del class_dict[name] if prop.default_overridden: overridden_defaults[name] = prop.default return overridden_defaults def _generators(class_dict: Dict[str, Any]): generators: Dict[str, PropertyDescriptorFactory[Any]] = {} for name, generator in tuple(class_dict.items()): if isinstance(generator, PropertyDescriptorFactory): del class_dict[name] generators[name] = generator return generators
[docs]class MetaHasProps(type): ''' Specialize the construction of |HasProps| classes. This class is a `metaclass`_ for |HasProps| that is responsible for creating and adding the |PropertyDescriptor| instances that delegate validation and serialization to |Property| attributes. .. _metaclass: https://docs.python.org/3/reference/datamodel.html#metaclasses ''' __properties__: Dict[str, Property[Any]] __overridden_defaults__: Dict[str, Unknown] __themed_values__: Dict[str, Unknown] def __new__(cls, class_name: str, bases: Tuple[type, ...], class_dict: Dict[str, Any]): ''' ''' overridden_defaults = _overridden_defaults(class_dict) generators = _generators(class_dict) properties = {} for name, generator in generators.items(): descriptors = generator.make_descriptors(name) for descriptor in descriptors: name = descriptor.name if name in class_dict: raise RuntimeError(f"Two property generators both created {class_name}.{name}") class_dict[name] = descriptor properties[name] = descriptor.property class_dict["__properties__"] = properties class_dict["__overridden_defaults__"] = overridden_defaults return super().__new__(cls, class_name, bases, class_dict) def __init__(cls, class_name: str, bases: Tuple[type, ...], _) -> None: # Check for improperly redeclared a Property attribute. base_properties: Dict[str, Any] = {} for base in (x for x in bases if issubclass(x, HasProps)): base_properties.update(base.properties(_with_props=True)) own_properties = {k: v for k, v in cls.__dict__.items() if isinstance(v, PropertyDescriptor)} redeclared = own_properties.keys() & base_properties.keys() if redeclared: warn(f"Properties {redeclared!r} in class {cls.__name__} were previously declared on a parent " "class. It never makes sense to do this. Redundant properties should be deleted here, or on" "the parent class. Override() can be used to change a default value of a base class property.", RuntimeWarning, stacklevel=2) # Check for no-op Overrides unused_overrides = cls.__overridden_defaults__.keys() - cls.properties(_with_props=True).keys() if unused_overrides: warn(f"Overrides of {unused_overrides} in class {cls.__name__} does not override anything.", RuntimeWarning, stacklevel=2)
[docs]class HasProps(metaclass=MetaHasProps): ''' Base class for all class types that have Bokeh properties. .. autoclasstoc:: ''' _initialized: bool = False _property_values: Dict[str, Unknown] _unstable_default_values: Dict[str, Unknown] _unstable_themed_values: Dict[str, Unknown]
[docs] def __init__(self, **properties: Any) -> None: ''' ''' super().__init__() self._property_values = {} self._unstable_default_values = {} self._unstable_themed_values = {} for name, value in properties.items(): setattr(self, name, value) self._initialized = True
def __setattr__(self, name: str, value: Unknown) -> None: ''' Intercept attribute setting on HasProps in order to special case a few situations: * short circuit all property machinery for ``_private`` attributes * suggest similar attribute names on attribute errors Args: name (str) : the name of the attribute to set on this object value (obj) : the value to set Returns: None ''' if name.startswith("_"): return super().__setattr__(name, value) properties = self.properties(_with_props=True) if name in properties: return super().__setattr__(name, value) descriptor = getattr(self.__class__, name, None) if isinstance(descriptor, property): # Python property return super().__setattr__(name, value) self._raise_attribute_error_with_matches(name, properties) def __getattr__(self, name: str) -> Unknown: ''' Intercept attribute setting on HasProps in order to special case a few situations: * short circuit all property machinery for ``_private`` attributes * suggest similar attribute names on attribute errors Args: name (str) : the name of the attribute to set on this object value (obj) : the value to set Returns: None ''' if name.startswith("_"): return super().__getattr__(name) properties = self.properties(_with_props=True) if name in properties: return super().__getattr__(name) descriptor = getattr(self.__class__, name, None) if isinstance(descriptor, property): # Python property return super().__getattr__(name) self._raise_attribute_error_with_matches(name, properties) def _raise_attribute_error_with_matches(self, name: str, properties: Iterable[str]) -> NoReturn: matches, text = difflib.get_close_matches(name.lower(), properties), "similar" if not matches: matches, text = sorted(properties), "possible" raise AttributeError(f"unexpected attribute {name!r} to {self.__class__.__name__}, {text} attributes are {nice_join(matches)}") def __str__(self) -> str: name = self.__class__.__name__ return f"{name}(...)" __repr__ = __str__ # Unfortunately we cannot implement __eq__. We rely on the default __hash__ # based on object identity, in order to put HasProps instances in sets. # Implementing __eq__ as structural equality would necessitate a __hash__ # that returns the same value different HasProps instances that compare # equal [1], and this would break many things. # # [1] https://docs.python.org/3/reference/datamodel.html#object.__hash__ #
[docs] def equals(self, other: HasProps) -> bool: ''' Structural equality of models. Args: other (HasProps) : the other instance to compare to Returns: True, if properties are structurally equal, otherwise False ''' if not isinstance(other, self.__class__): return False else: return self.properties_with_values() == other.properties_with_values()
# TODO: this assumes that HasProps/Model are defined as in bokehjs, which # isn't the case here. HasProps must be serializable through refs only. __view_model__: str __view_module__: str
[docs] @classmethod def static_to_serializable(cls, serializer: StaticSerializer) -> ModelRef: # TODO: resolving already visited objects should be serializer's duty modelref = serializer.get_ref(cls) if modelref is not None: return modelref bases: List[Type[HasProps]] = [ basecls for basecls in cls.__bases__ if is_DataModel(basecls) ] if len(bases) == 0: extends = None elif len(bases) == 1: extends = bases[0].static_to_serializable(serializer) else: raise RuntimeError("multiple bases are not supported") name = cls.__view_model__ module = cls.__view_module__ # TODO: remove this if module == "__main__" or module.split(".")[0] == "bokeh": module = None properties: List[PropertyDef] = [] overrides: List[OverrideDef] = [] # TODO: don't use unordered sets for prop_name in cls.__properties__: descriptor = cls.lookup(prop_name) kind = None # TODO: serialize kinds default = descriptor.property._default # TODO: private member properties.append(PropertyDef(name=prop_name, kind=kind, default=default)) for prop_name, default in getattr(cls, "__overridden_defaults__", {}).items(): overrides.append(OverrideDef(name=prop_name, default=default)) modeldef = ModelDef(name=name, module=module, extends=extends, properties=properties, overrides=overrides) modelref = ModelRef(name=name, module=module) serializer.add_ref(cls, modelref, modeldef) return modelref
[docs] def to_serializable(self, serializer: Any) -> Any: pass # TODO: new serializer, hopefully in near future
[docs] def set_from_json(self, name: str, json: JSON, *, models: Dict[ID, HasProps] | None = None, setter: Setter | None = None) -> None: ''' Set a property value on this object from JSON. Args: name: (str) : name of the attribute to set json: (JSON-value) : value to set to the attribute to models (dict or None, optional) : Mapping of model ids to models (default: None) This is needed in cases where the attributes to update also have values that have references. setter(ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. In the context of a Bokeh server application, incoming updates to properties will be annotated with the session that is doing the updating. This value is propagated through any subsequent change notifications that the update triggers. The session can compare the event setter to itself, and suppress any updates that originate from itself. Returns: None ''' if name in self.properties(_with_props=True): log.trace(f"Patching attribute {name!r} of {self!r} with {json!r}") # type: ignore # TODO: log.trace() descriptor = self.lookup(name) descriptor.set_from_json(self, json, models=models, setter=setter) else: log.warning("JSON had attr %r on obj %r, which is a client-only or invalid attribute that shouldn't have been sent", name, self)
[docs] def update(self, **kwargs: Any) -> None: ''' Updates the object's properties from the given keyword arguments. Returns: None Examples: The following are equivalent: .. code-block:: python from bokeh.models import Range1d r = Range1d # set properties individually: r.start = 10 r.end = 20 # update properties together: r.update(start=10, end=20) ''' for k, v in kwargs.items(): setattr(self, k, v)
[docs] def update_from_json(self, json_attributes: Dict[str, JSON], *, models: Mapping[ID, HasProps] | None = None, setter: Setter | None = None) -> None: ''' Updates the object's properties from a JSON attributes dictionary. Args: json_attributes: (JSON-dict) : attributes and values to update models (dict or None, optional) : Mapping of model ids to models (default: None) This is needed in cases where the attributes to update also have values that have references. setter(ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. In the context of a Bokeh server application, incoming updates to properties will be annotated with the session that is doing the updating. This value is propagated through any subsequent change notifications that the update triggers. The session can compare the event setter to itself, and suppress any updates that originate from itself. Returns: None ''' for k, v in json_attributes.items(): self.set_from_json(k, v, models=models, setter=setter)
@overload @classmethod def lookup(cls, name: str, *, raises: Literal[True] = True) -> PropertyDescriptor[Any]: ... @overload @classmethod def lookup(cls, name: str, *, raises: Literal[False] = False) -> PropertyDescriptor[Any] | None: ...
[docs] @classmethod def lookup(cls, name: str, *, raises: bool = True) -> PropertyDescriptor[Any] | None: ''' Find the ``PropertyDescriptor`` for a Bokeh property on a class, given the property name. Args: name (str) : name of the property to search for raises (bool) : whether to raise or return None if missing Returns: PropertyDescriptor : descriptor for property named ``name`` ''' attr = getattr(cls, name, None) if attr is not None or (attr is None and not raises): return attr raise AttributeError(f"{cls.__name__}.{name} property descriptor does not exist")
@overload @classmethod @lru_cache(None) def properties(cls, *, _with_props: Literal[False] = False) -> Set[str]: ... @overload @classmethod @lru_cache(None) def properties(cls, *, _with_props: Literal[True] = True) -> Dict[str, Property[Any]]: ...
[docs] @classmethod @lru_cache(None) def properties(cls, *, _with_props: bool = False) -> Union[Set[str], Dict[str, Property[Any]]]: ''' Collect the names of properties on this class. .. warning:: In a future version of Bokeh, this method will return a dictionary mapping property names to property objects. To future-proof this current usage of this method, wrap the return value in ``list``. Returns: property names ''' props: Dict[str, Property[Any]] = {} for c in cls.__mro__: props.update(getattr(c, "__properties__", {})) if not _with_props: return set(props) return props
[docs] @classmethod @lru_cache(None) def properties_with_refs(cls) -> Dict[str, Property[Any]]: ''' Collect the names of all properties on this class that also have references. This method *always* traverses the class hierarchy and includes properties defined on any parent classes. Returns: set[str] : names of properties that have references ''' return {k: v for k, v in cls.properties(_with_props=True).items() if v.has_ref}
[docs] @classmethod @lru_cache(None) def dataspecs(cls) -> Dict[str, DataSpec]: ''' Collect the names of all ``DataSpec`` properties on this class. This method *always* traverses the class hierarchy and includes properties defined on any parent classes. Returns: set[str] : names of ``DataSpec`` properties ''' from .property.dataspec import DataSpec # avoid circular import return {k: v for k, v in cls.properties(_with_props=True).items() if isinstance(v, DataSpec)}
[docs] def properties_with_values(self, *, include_defaults: bool = True, include_undefined: bool = False) -> Dict[str, Unknown]: ''' Collect a dict mapping property names to their values. This method *always* traverses the class hierarchy and includes properties defined on any parent classes. Non-serializable properties are skipped and property values are in "serialized" format which may be slightly different from the values you would normally read from the properties; the intent of this method is to return the information needed to losslessly reconstitute the object instance. Args: include_defaults (bool, optional) : Whether to include properties that haven't been explicitly set since the object was created. (default: True) Returns: dict : mapping from property names to their values ''' return self.query_properties_with_values(lambda prop: prop.serialized, include_defaults=include_defaults, include_undefined=include_undefined)
@classmethod def _overridden_defaults(cls) -> Dict[str, Unknown]: ''' Returns a dictionary of defaults that have been overridden. .. note:: This is an implementation detail of ``Property``. ''' defaults: Dict[str, Unknown] = {} for c in reversed(cls.__mro__): defaults.update(getattr(c, "__overridden_defaults__", {})) return defaults
[docs] def query_properties_with_values(self, query: Callable[[PropertyDescriptor[Any]], bool], *, include_defaults: bool = True, include_undefined: bool = False) -> Dict[str, Unknown]: ''' Query the properties values of |HasProps| instances with a predicate. Args: query (callable) : A callable that accepts property descriptors and returns True or False include_defaults (bool, optional) : Whether to include properties that have not been explicitly set by a user (default: True) Returns: dict : mapping of property names and values for matching properties ''' themed_keys: Set[str] = set() result: Dict[str, Unknown] = {} if include_defaults: keys = self.properties(_with_props=True) else: # TODO (bev) For now, include unstable default values. Things rely on Instances # always getting serialized, even defaults, and adding unstable defaults here # accomplishes that. Unmodified defaults for property value containers will be # weeded out below. keys = set(self._property_values.keys()) | set(self._unstable_default_values.keys()) themed_values = self.themed_values() if themed_values is not None: themed_keys = set(themed_values.keys()) keys |= themed_keys for key in keys: descriptor = self.lookup(key) if not query(descriptor): continue try: value = descriptor.serializable_value(self) except UnsetValueError: if include_undefined: value = Undefined else: continue else: if not include_defaults and key not in themed_keys: if isinstance(value, PropertyValueContainer) and key in self._unstable_default_values: continue result[key] = value return result
[docs] def themed_values(self) -> Dict[str, Unknown] | None: ''' Get any theme-provided overrides. Results are returned as a dict from property name to value, or ``None`` if no theme overrides any values for this instance. Returns: dict or None ''' return getattr(self, '__themed_values__', None)
[docs] def apply_theme(self, property_values: Dict[str, Unknown]) -> None: ''' Apply a set of theme values which will be used rather than defaults, but will not override application-set values. The passed-in dictionary may be kept around as-is and shared with other instances to save memory (so neither the caller nor the |HasProps| instance should modify it). Args: property_values (dict) : theme values to use in place of defaults Returns: None ''' old_dict = self.themed_values() # if the same theme is set again, it should reuse the same dict if old_dict is property_values: # lgtm [py/comparison-using-is] return removed: Set[str] = set() # we're doing a little song-and-dance to avoid storing __themed_values__ or # an empty dict, if there's no theme that applies to this HasProps instance. if old_dict is not None: removed.update(set(old_dict.keys())) added = set(property_values.keys()) old_values: Dict[str, Unknown] = {} for k in added.union(removed): old_values[k] = getattr(self, k) if len(property_values) > 0: setattr(self, '__themed_values__', property_values) elif hasattr(self, '__themed_values__'): delattr(self, '__themed_values__') # Property container values might be cached even if unmodified. Invalidate # any cached values that are not modified at this point. for k, v in old_values.items(): if k in self._unstable_themed_values: del self._unstable_themed_values[k] # Emit any change notifications that result for k, v in old_values.items(): descriptor = self.lookup(k) if isinstance(descriptor, PropertyDescriptor): descriptor.trigger_if_changed(self, v)
[docs] def unapply_theme(self) -> None: ''' Remove any themed values and restore defaults. Returns: None ''' self.apply_theme(property_values={})
def _clone(self) -> HasProps: ''' Duplicate a HasProps object. Values that are containers are shallow-copied. ''' return self.__class__(**self._property_values)
KindRef = Any # TODO class PropertyDef(TypedDict): name: str kind: KindRef | None default: Unknown | None class OverrideDef(TypedDict): name: str default: Unknown class ModelRef(TypedDict): name: str module: str | None class ModelDef(ModelRef): extends: ModelRef | None properties: List[PropertyDef] | None overrides: List[OverrideDef] | None #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- _ABSTRACT_ADMONITION = ''' .. note:: This is an abstract base class used to help organize the hierarchy of Bokeh model types. **It is not useful to instantiate on its own.** ''' #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------