Source code for bokeh.core.property.container

#-----------------------------------------------------------------------------
# Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors.
# All rights reserved.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
"""

"""

#-----------------------------------------------------------------------------
# Boilerplate
#-----------------------------------------------------------------------------
from __future__ import annotations

import logging # isort:skip
log = logging.getLogger(__name__)

#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------

# Standard library imports
from collections.abc import (
    Container,
    Iterable,
    Mapping,
    Sequence,
    Sized,
)
from typing import TYPE_CHECKING, Any

# Bokeh imports
from ...util.serialization import decode_base64_dict, transform_column_source_data
from ._sphinx import property_link, register_type_link, type_link
from .bases import ContainerProperty, DeserializationError
from .descriptors import ColumnDataPropertyDescriptor
from .enum import Enum
from .numeric import Int
from .singletons import Undefined
from .wrappers import PropertyValueColumnData, PropertyValueDict, PropertyValueList

if TYPE_CHECKING:
    from ...document.events import DocumentPatchedEvent

#-----------------------------------------------------------------------------
# Globals and constants
#-----------------------------------------------------------------------------

__all__ = (
    'Array',
    'ColumnData',
    'Dict',
    'List',
    'RelativeDelta',
    'RestrictedDict',
    'Seq',
    'Tuple',
)

#-----------------------------------------------------------------------------
# General API
#-----------------------------------------------------------------------------

[docs]class Seq(ContainerProperty): """ Accept non-string ordered sequences of values, e.g. list, tuple, array. """ def __init__(self, item_type, default=Undefined, help=None) -> None: self.item_type = self._validate_type_param(item_type) super().__init__(default=default, help=help) def __str__(self) -> str: return f"{self.__class__.__name__}({self.item_type})" @property def type_params(self): return [self.item_type] def from_json(self, json, *, models=None): if isinstance(json, list): return self._new_instance([ self.item_type.from_json(item, models=models) for item in json ]) else: raise DeserializationError(f"{self} expected a list, got {json}") def validate(self, value, detail=True): super().validate(value, True) if self._is_seq(value) and all(self.item_type.is_valid(item) for item in value): return if self._is_seq(value): invalid = [] for item in value: if not self.item_type.is_valid(item): invalid.append(item) msg = "" if not detail else f"expected an element of {self}, got seq with invalid items {invalid!r}" raise ValueError(msg) msg = "" if not detail else f"expected an element of {self}, got {value!r}" raise ValueError(msg) @classmethod def _is_seq(cls, value): return ((isinstance(value, Sequence) or cls._is_seq_like(value)) and not isinstance(value, str)) @classmethod def _is_seq_like(cls, value): return (isinstance(value, (Container, Sized, Iterable)) and hasattr(value, "__getitem__") # NOTE: this is what makes it disallow set type and not isinstance(value, Mapping)) def _new_instance(self, value): return value
[docs]class List(Seq): """ Accept Python list values. """ def __init__(self, item_type, default=[], help=None) -> None: # todo: refactor to not use mutable objects as default values. # Left in place for now because we want to allow None to express # optional values. Also in Dict. super().__init__(item_type, default=default, help=help) def wrap(self, value): """ Some property types need to wrap their values in special containers, etc. """ if isinstance(value, list): if isinstance(value, PropertyValueList): return value else: return PropertyValueList(value) else: return value @classmethod def _is_seq(cls, value): return isinstance(value, list)
[docs]class Array(Seq): """ Accept NumPy array values. """ @classmethod def _is_seq(cls, value): import numpy as np return isinstance(value, np.ndarray) def _new_instance(self, value): import numpy as np return np.array(value)
[docs]class Dict(ContainerProperty): """ Accept Python dict values. If a default value is passed in, then a shallow copy of it will be used for each new use of this property. """ def __init__(self, keys_type, values_type, default={}, help=None) -> None: self.keys_type = self._validate_type_param(keys_type) self.values_type = self._validate_type_param(values_type) super().__init__(default=default, help=help) def __str__(self) -> str: return f"{self.__class__.__name__}({self.keys_type}, {self.values_type})" @property def type_params(self): return [self.keys_type, self.values_type] def from_json(self, json, *, models=None): if isinstance(json, dict): return { self.keys_type.from_json(key, models=models): self.values_type.from_json(value, models=models) for key, value in json.items() } else: raise DeserializationError(f"{self} expected a dict, got {json}") def validate(self, value, detail=True): super().validate(value, detail) key_is_valid = self.keys_type.is_valid value_is_valid = self.values_type.is_valid if isinstance(value, dict) and all(key_is_valid(key) and value_is_valid(val) for key, val in value.items()): return msg = "" if not detail else f"expected an element of {self}, got {value!r}" raise ValueError(msg) def wrap(self, value): """ Some property types need to wrap their values in special containers, etc. """ if isinstance(value, dict): if isinstance(value, PropertyValueDict): return value else: return PropertyValueDict(value) else: return value
[docs]class ColumnData(Dict): """ Accept a Python dictionary suitable as the ``data`` attribute of a :class:`~bokeh.models.sources.ColumnDataSource`. This class is a specialization of ``Dict`` that handles efficiently encoding columns that are NumPy arrays. """ def make_descriptors(self, base_name): """ Return a list of ``ColumnDataPropertyDescriptor`` instances to install on a class, in order to delegate attribute access to this property. Args: base_name (str) : the name of the property these descriptors are for Returns: list[ColumnDataPropertyDescriptor] The descriptors returned are collected by the ``MetaHasProps`` metaclass and added to ``HasProps`` subclasses during class creation. """ return [ ColumnDataPropertyDescriptor(base_name, self) ] def from_json(self, json, *, models=None): """ Decodes column source data encoded as lists or base64 strings. """ if not isinstance(json, dict): raise DeserializationError(f"{self} expected a dict, got {json}") new_data = {} for key, value in json.items(): key = self.keys_type.from_json(key, models=models) if isinstance(value, dict) and '__ndarray__' in value: new_data[key] = decode_base64_dict(value) elif isinstance(value, list) and any(isinstance(el, dict) and '__ndarray__' in el for el in value): new_list = [] for el in value: if isinstance(el, dict) and '__ndarray__' in el: el = decode_base64_dict(el) elif isinstance(el, list): el = self.values_type.from_json(el) new_list.append(el) new_data[key] = new_list else: new_data[key] = self.values_type.from_json(value, models=models) return new_data def _hinted_value(self, value: Any, hint: DocumentPatchedEvent | None) -> Any: from ...document.events import ColumnDataChangedEvent, ColumnsStreamedEvent if isinstance(hint, ColumnDataChangedEvent): return { col: hint.column_source.data[col] for col in hint.cols } if isinstance(hint, ColumnsStreamedEvent): return hint.data return value def serialize_value(self, value): return transform_column_source_data(value) def wrap(self, value): """ Some property types need to wrap their values in special containers, etc. """ if isinstance(value, dict): if isinstance(value, PropertyValueColumnData): return value else: return PropertyValueColumnData(value) else: return value
[docs]class Tuple(ContainerProperty): """ Accept Python tuple values. """ def __init__(self, tp1, tp2, *type_params, **kwargs) -> None: self._type_params = list(map(self._validate_type_param, (tp1, tp2) + type_params)) super().__init__(default=kwargs.get("default", Undefined), help=kwargs.get("help")) def __str__(self) -> str: item_types = ", ".join(str(x) for x in self.type_params) return f"{self.__class__.__name__}({item_types})" @property def type_params(self): return self._type_params def from_json(self, json, *, models=None): if isinstance(json, list): return tuple(type_param.from_json(item, models=models) for type_param, item in zip(self.type_params, json)) else: raise DeserializationError(f"{self} expected a list, got {json}") def validate(self, value, detail=True): super().validate(value, detail) if isinstance(value, (tuple, list)) and len(self.type_params) == len(value): if all(type_param.is_valid(item) for type_param, item in zip(self.type_params, value)): return msg = "" if not detail else f"expected an element of {self}, got {value!r}" raise ValueError(msg) def transform(self, value): """ Change the value into a JSON serializable format. """ return tuple(typ.transform(x) for (typ, x) in zip(self.type_params, value)) def serialize_value(self, value): """ Change the value into a JSON serializable format. """ return tuple(typ.serialize_value(x) for (typ, x) in zip(self.type_params, value))
[docs]class RelativeDelta(Dict): """ Accept RelativeDelta dicts for time delta values. """ def __init__(self, default={}, help=None) -> None: keys = Enum("years", "months", "days", "hours", "minutes", "seconds", "microseconds") values = Int super().__init__(keys, values, default=default, help=help) def __str__(self) -> str: return self.__class__.__name__
[docs]class RestrictedDict(Dict): """ Check for disallowed key(s). """ def __init__(self, keys_type, values_type, disallow, default={}, help=None) -> None: self._disallow = set(disallow) super().__init__(keys_type=keys_type, values_type=values_type, default=default, help=help) def validate(self, value, detail=True): super().validate(value, detail) error_keys = self._disallow & value.keys() if error_keys: msg = "" if not detail else f"Disallowed keys: {error_keys!r}" raise ValueError(msg)
#----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- @register_type_link(Dict) def _sphinx_type_dict(obj): return f"{property_link(obj)}({type_link(obj.keys_type)}, {type_link(obj.values_type)})" @register_type_link(Seq) def _sphinx_type_seq(obj): return f"{property_link(obj)}({type_link(obj.item_type)})" @register_type_link(Tuple) def _sphinx_type_tuple(obj): item_types = ", ".join(type_link(x) for x in obj.type_params) return f"{property_link(obj)}({item_types})"