nested_colormapped#
A bar chart based on simple Python lists of data. This example demonstrates automatic colormapping of nested categorical factors.
Details
- Bokeh APIs:
- More info:
- Keywords:
bar, colormap, vbar
from bokeh.models import ColumnDataSource, FactorRange
from bokeh.plotting import figure, show
from bokeh.transform import factor_cmap
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
years = ['2015', '2016', '2017']
data = {'fruits' : fruits,
'2015' : [2, 1, 4, 3, 2, 4],
'2016' : [5, 3, 3, 2, 4, 6],
'2017' : [3, 2, 4, 4, 5, 3]}
palette = ["#c9d9d3", "#718dbf", "#e84d60"]
# this creates [ ("Apples", "2015"), ("Apples", "2016"), ("Apples", "2017"), ("Pears", "2015), ... ]
x = [ (fruit, year) for fruit in fruits for year in years ]
counts = sum(zip(data['2015'], data['2016'], data['2017']), ()) # like an hstack
source = ColumnDataSource(data=dict(x=x, counts=counts))
p = figure(x_range=FactorRange(*x), height=350, title="Fruit Counts by Year",
toolbar_location=None, tools="")
p.vbar(x='x', top='counts', width=0.9, source=source, line_color="white",
fill_color=factor_cmap('x', palette=palette, factors=years, start=1, end=2))
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
show(p)