ridgeplot#
A ridgeline plot using the Perceptions of Probability dataset. This example demonstrates the uses of categorical offsets to position categorical values explicitly. This chart shows the distribution of responses to the prompt What probability would you assign to the phrase “Highly likely”.
Details
- Sampledata:
- Bokeh APIs:
- More info:
- Keywords:
patch, alpha, categorical, palette, patch, ridgeline
import colorcet as cc
from numpy import linspace
from scipy.stats import gaussian_kde
from bokeh.models import ColumnDataSource, FixedTicker, PrintfTickFormatter
from bokeh.plotting import figure, show
from bokeh.sampledata.perceptions import probly
def ridge(category, data, scale=20):
return list(zip([category]*len(data), scale*data))
cats = list(reversed(probly.keys()))
palette = [cc.rainbow[i*15] for i in range(17)]
x = linspace(-20,110, 500)
source = ColumnDataSource(data=dict(x=x))
p = figure(y_range=cats, width=900, x_range=(-5, 105), toolbar_location=None)
for i, cat in enumerate(reversed(cats)):
pdf = gaussian_kde(probly[cat])
y = ridge(cat, pdf(x))
source.add(y, cat)
p.patch('x', cat, color=palette[i], alpha=0.6, line_color="black", source=source)
p.outline_line_color = None
p.background_fill_color = "#efefef"
p.xaxis.ticker = FixedTicker(ticks=list(range(0, 101, 10)))
p.xaxis.formatter = PrintfTickFormatter(format="%d%%")
p.ygrid.grid_line_color = None
p.xgrid.grid_line_color = "#dddddd"
p.xgrid.ticker = p.xaxis.ticker
p.axis.minor_tick_line_color = None
p.axis.major_tick_line_color = None
p.axis.axis_line_color = None
p.y_range.range_padding = 0.12
show(p)