BokehJS#
BokehJS is a client-side library that lets you create interactive plots and applications. It takes care of drawing, rendering, and event handling. The Bokeh Python library (and libraries for other languages such as R, Scala, and Julia) enables convenient high-level interaction with BokehJS, so you don’t have to worry about JavaScript or web development.
However, BokehJS also has its own API that lets you do pure JavaScript development using BokehJS directly. Additionally, Custom extensions with custom models typically require direct interaction with BokehJS.
Warning
The BokehJS APIs is still in development and may undergo changes in future releases.
Obtaining BokehJS#
BokehJS is available via CDN and npm
. See the Installing standalone BokehJS
section of the Installation details page for more details.
Low-level models#
Generally, the low-level models for plots and applications (such as guides, glyphs, widgets) match the Bokeh Python models exactly. The reference guide is therefore the primary reference for BokehJS models, even though it focuses on Python.
Whereas the Python library is organized hierarchically, JavaScript models
are all in one flat Bokeh
module. Typically any Python ClassName
is available as Bokeh.ClassName
in JavaScript. For a complete list
of JavaScript models, see bokehjs/src/lib/api/models.ts.
When creating models in JavaScript, make a JavaScript object of all the keyword arguments you’d pass to the Python object initializer. Here is an example of how to initialize a Range1d model in both languages:
Python
xdr = Range1d(start=-0.5, end=20.5)
JavaScript
const xdr = new Bokeh.Range1d({ start: -0.5, end: 20.5 });
This pattern works in all similar situations. Once you create a Bokeh model,
you can set its properties in exactly the same way in both languages. For
example, xdr.end = 30
sets the end
value to 30 on the Range1d model
above in both Python and JavaScript.
Below is an example that creates a plot with axes, grids, and a line glyph from scratch. Compare with samples in examples/models and you’ll see that the code in Python and JavaScript is nearly identical at this level:
// create some data and a ColumnDataSource
const x = Bokeh.LinAlg.linspace(-0.5, 20.5, 10);
const y = x.map(function (v) { return v * 0.5 + 3.0; });
const source = new Bokeh.ColumnDataSource({ data: { x: x, y: y } });
// create some ranges for the plot
const xdr = new Bokeh.Range1d({ start: -0.5, end: 20.5 });
const ydr = new Bokeh.Range1d({ start: -0.5, end: 20.5 });
// make the plot
const plot = new Bokeh.Plot({
title: "BokehJS Plot",
x_range: xdr,
y_range: ydr,
width: 400,
height: 400,
background_fill_color: "#F2F2F7"
});
// add axes to the plot
const xaxis = new Bokeh.LinearAxis({ axis_line_color: null });
const yaxis = new Bokeh.LinearAxis({ axis_line_color: null });
plot.add_layout(xaxis, "below");
plot.add_layout(yaxis, "left");
// add grids to the plot
const xgrid = new Bokeh.Grid({ ticker: xaxis.ticker, dimension: 0 });
const ygrid = new Bokeh.Grid({ ticker: yaxis.ticker, dimension: 1 });
plot.add_layout(xgrid);
plot.add_layout(ygrid);
// add a Line glyph
const line = new Bokeh.Line({
x: { field: "x" },
y: { field: "y" },
line_color: "#666699",
line_width: 2
});
plot.add_glyph(line, source);
Bokeh.Plotting.show(plot);
The code above generates the following plot:
Interfaces#
Similar to the Python Bokeh library, BokehJS provides various higher-level
interfaces. These interfaces let you interact with and compose low-level
model objects. The higher-level interfaces comprise Bokeh.Plotting
and
Bokeh.Charts
.
Note
Starting from version 0.12.2
these APIs make up the BokehJS API in
the bokeh-api.js
file. You’ll have to import this file in addition
to bokeh.js
to enable these APIs.
Bokeh.Plotting
#
The JavaScript Bokeh.Plotting
API is a port of the Python
bokeh.plotting interface. Accordingly, the information in the
Basic plotting section of the User guide can be a useful
reference in addition to the material provided here.
The JavaScript sample below is very similar to the Python code in examples/basic/scatters/color_scatter.py:
const plt = Bokeh.Plotting;
// set up some data
const M = 100;
const xx = [];
const yy = [];
const colors = [];
const radii = [];
for (let y = 0; y <= M; y += 4) {
for (let x = 0; x <= M; x += 4) {
xx.push(x);
yy.push(y);
colors.push(plt.color([50+2*x, 30+2*y, 150]));
radii.push(Math.random() * 1.5);
}
}
// create a data source
const source = new Bokeh.ColumnDataSource({
data: { x: xx, y: yy, radius: radii, colors: colors }
});
// make the plot and add some tools
const tools = "pan,crosshair,wheel_zoom,box_zoom,reset,save";
const p = plt.figure({ title: "Colorful Scatter", tools: tools });
// call the circle glyph method to add some circle glyphs
const circles = p.circle({ field: "x" }, { field: "y" }, {field: "radius"}, {
source: source,
fill_color: { field: "colors" },
fill_alpha: 0.6,
line_color: null,
});
// show the plot
plt.show(p);
The code above generates the following plot:
Bokeh.Charts
#
The JavaScript Bokeh.Charts
API is a high-level charting interface that
is unique to BokehJS. The API supports two high-level charts: pie
and bar
.
Bokeh.Charts.pie
#
The following lets you create basic pie charts with Bokeh.Charts.pie
:
Bokeh.Charts.pie(data, { options })
Where data
is a JavaScript object that has labels
and
values
keys and options
is an object that can include
any of the following optional keys:
width
:number — chart width in pixels
height
:number — chart height in pixels
inner_radius
:number — inner radius for wedges in pixels
outer_radius
:number — outer radius for wedges in pixels
start_angle
:number — start angle for wedges in radians
end_angle
:number — end angle for wedges in radians
center
:[number, number] —
(x, y)
location of the pie center in pixelspalette
:Palette | Array<Color> — a named palette or list of colors to color-map the values
slice_labels
:“labels” | “values” | “percentages” — what the tooltip should show
By default, plots created with Bokeh.Charts.pie
automatically add a tooltip
and hover policy. Here is an example of a pie
chart and the plot it generates:
const plt = Bokeh.Plotting;
const pie_data = {
labels: ['Work', 'Eat', 'Commute', 'Sport', 'Watch TV', 'Sleep'],
values: [8, 2, 2, 4, 0, 8],
};
const p1 = Bokeh.Charts.pie(pie_data);
const p2 = Bokeh.Charts.pie(pie_data, {
inner_radius: 0.2,
start_angle: Math.PI / 2
});
const p3 = Bokeh.Charts.pie(pie_data, {
inner_radius: 0.2,
start_angle: Math.PI / 6,
end_angle: 5 * Math.PI / 6
});
const p4 = Bokeh.Charts.pie(pie_data, {
inner_radius: 0.2,
palette: "Oranges9",
slice_labels: "percentages"
});
// add the plot to a document and display it
const doc = new Bokeh.Document();
doc.add_root(plt.gridplot(
[[p1, p2], [p3, p4]],
{width: 250, height: 250}));
Bokeh.embed.add_document_standalone(doc, document.currentScript.parentElement);
The code above generates the following plot:
Bokeh.Charts.bar
#
The following lets you create basic bar charts with Bokeh.Charts.bar
:
Bokeh.Charts.bar(data, { options })
Where data
is an array with entries representing rows of a data table.
The first row should contain the column headers. Here is an example of
some sales data from different regions for different years:
const data = [
['Region', 'Year', 'Sales'],
['East', 2015, 23000 ],
['East', 2016, 35000 ],
['West', 2015, 16000 ],
['West', 2016, 34000 ],
['North', 2016, 12000 ],
];
Similar to the pie
chart, the options
parameter is an object that
can include any of the following optional keys:
width
:number — chart width in pixels
height
:number — chart height in pixels
stacked
:boolean — whether the bars should be stacked or not
orientation
:“horizontal” | “vertical” — how the bars should be oriented
bar_width
:number — width of each bar in pixels
palette
:Palette | Array<Color> — a named palette or list of colors to color-map the values
axis_number_format
:string — a format string to use for axis ticks
By default, plots created with Bokeh.Charts.bar
automatically add a tooltip
and hover policy. Here is an example of a bar
chart and the plot it generates:
const plt = Bokeh.Plotting;
const bar_data = [
['City', '2010 Population', '2000 Population'],
['NYC', 8175000, 8008000],
['LA', 3792000, 3694000],
['Chicago', 2695000, 2896000],
['Houston', 2099000, 1953000],
['Philadelphia', 1526000, 1517000],
];
const p1 = Bokeh.Charts.bar(bar_data, {
axis_number_format: "0.[00]a"
});
const p2 = Bokeh.Charts.bar(bar_data, {
axis_number_format: "0.[00]a",
stacked: true
});
const p3 = Bokeh.Charts.bar(bar_data, {
axis_number_format: "0.[00]a",
orientation: "vertical"
});
const p4 = Bokeh.Charts.bar(bar_data, {
axis_number_format: "0.[00]a",
orientation: "vertical",
stacked: true
});
plt.show(plt.gridplot([[p1, p2], [p3, p4]], {width: 350, height: 350}));
The code above generates the following plot:
Minimal example#
The following basic example shows how to import libraries and create and modify plots.
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Complete Example</title>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-3.6.0.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.0.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.0.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.0.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.6.0.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-api-3.6.0.min.js"></script>
<script>
//The order of CSS and JS imports above is important.
</script>
<script>
// create a data source to hold data
const source = new Bokeh.ColumnDataSource({
data: { x: [], y: [] }
});
// make a plot with some tools
const plot = Bokeh.Plotting.figure({
title: 'Example of random data',
tools: "pan,wheel_zoom,box_zoom,reset,save",
height: 300,
width: 300
});
// add a line with data from the source
plot.line({ field: "x" }, { field: "y" }, {
source: source,
line_width: 2
});
// show the plot, appending it to the end of the current section
Bokeh.Plotting.show(plot);
function addPoint() {
// add data --- all fields must be the same length.
source.data.x.push(Math.random())
source.data.y.push(Math.random())
// update the data source with local changes
source.change.emit()
}
const addDataButton = document.createElement("Button");
addDataButton.appendChild(document.createTextNode("Some data."));
document.currentScript.parentElement.appendChild(addDataButton);
addDataButton.addEventListener("click", addPoint);
addPoint();
addPoint();
</script>
</head>
<body>
</body>
</html>
The code above generates the following plot: