Source code for bokeh.models.tickers

#-----------------------------------------------------------------------------
# Copyright (c) Anaconda, Inc., and Bokeh Contributors.
# All rights reserved.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
''' Models for computing good tick locations on different kinds
of plots.

'''

#-----------------------------------------------------------------------------
# Boilerplate
#-----------------------------------------------------------------------------
from __future__ import annotations

import logging # isort:skip
log = logging.getLogger(__name__)

#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------

# Bokeh imports
from ..core.enums import LatLon
from ..core.has_props import abstract
from ..core.properties import (
    AnyRef,
    Auto,
    Dict,
    Either,
    Enum,
    Float,
    Instance,
    Int,
    NonEmpty,
    Nullable,
    Override,
    Required,
    Seq,
    String,
)
from ..core.validation import error
from ..core.validation.errors import MISSING_MERCATOR_DIMENSION
from ..model import Model
from .mappers import ScanningColorMapper

#-----------------------------------------------------------------------------
# Globals and constants
#-----------------------------------------------------------------------------

__all__ = (
    'AdaptiveTicker',
    'BasicTicker',
    'BinnedTicker',
    'CategoricalTicker',
    'CompositeTicker',
    'ContinuousTicker',
    'CustomJSTicker',
    'DatetimeTicker',
    'DaysTicker',
    'FixedTicker',
    'LogTicker',
    'MercatorTicker',
    'MonthsTicker',
    'SingleIntervalTicker',
    'Ticker',
    'YearsTicker',
)

#-----------------------------------------------------------------------------
# General API
#-----------------------------------------------------------------------------

[docs] @abstract class Ticker(Model): ''' A base class for all ticker types. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs)
[docs] class CustomJSTicker(Ticker): ''' Generate tick locations that are computed by a user-defined function. A ``CustomJSTicker`` may be used with either a continuous (numeric) axis, or a categorical axis. However, only basic, non-hierarchical categorical axes (i.e. with a single level of factors) are supported. .. warning:: The explicit purpose of this Bokeh Model is to embed *raw JavaScript code* for a browser to execute. If any part of the code is derived from untrusted user inputs, then you must take appropriate care to sanitize the user input prior to passing to Bokeh. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) args = Dict(String, AnyRef, help=""" A mapping of names to Python objects. In particular those can be bokeh's models. These objects are made available to the ticker's code snippet as the values of named parameters to the callback. """) major_code = String(default="", help=""" Callback code to run in the browser to compute minor tick locations for the current viewport. The ``cb_data`` parameter that is available to the callback code will contain four specific fields: ``start`` the computed start coordinate of the axis ``end`` the computed end of the axis ``range`` the Range model for this axis ``cross_loc`` the coordinate that this axis intersects the orthogonal axis """) minor_code = String(default="", help=""" Callback code to run in the browser to compute minor tick locations for the current viewport. .. note:: Minor ticks are not used for categorical axes. This property will be ignored when the range is a ``FactorRange``. The ``cb_data`` parameter that is available to the callback code will contain five specific fields: ``major_ticks`` the list of the current computed major tick locations ``start`` the computed start coordinate of the axis ``end`` the computed end of the axis ``range`` the Range model for this axis ``cross_loc`` the coordinate that this axis intersects the orthogonal axis """)
[docs] @abstract class ContinuousTicker(Ticker): ''' A base class for non-categorical ticker types. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) num_minor_ticks = Int(5, help=""" The number of minor tick positions to generate between adjacent major tick values. """) desired_num_ticks = Int(6, help=""" A desired target number of major tick positions to generate across the plot range. .. note: This value is a suggestion, and ticker subclasses may ignore it entirely, or use it only as an ideal goal to approach as well as can be, in the context of a specific ticking strategy. """)
[docs] class FixedTicker(ContinuousTicker): ''' Generate ticks at fixed, explicitly supplied locations. .. note:: The ``desired_num_ticks`` property is ignored by this Ticker. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) ticks = Seq(Float, default=[], help=""" List of major tick locations. """) minor_ticks = Seq(Float, default=[], help=""" List of minor tick locations. """)
[docs] class AdaptiveTicker(ContinuousTicker): ''' Generate "nice" round ticks at any magnitude. Creates ticks that are "base" multiples of a set of given mantissas. For example, with ``base=10`` and ``mantissas=[1, 2, 5]``, the ticker will generate the sequence:: ..., 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, ... ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) base = Float(10.0, help=""" The multiplier to use for scaling mantissas. """) mantissas = Seq(Float, default=[1, 2, 5], help=""" The acceptable list numbers to generate multiples of. """) min_interval = Float(0.0, help=""" The smallest allowable interval between two adjacent ticks. """) max_interval = Nullable(Float, help=""" The largest allowable interval between two adjacent ticks. .. note:: To specify an unbounded interval, set to ``None``. """)
[docs] class CompositeTicker(ContinuousTicker): ''' Combine different tickers at different scales. Uses the ``min_interval`` and ``max_interval`` interval attributes of the tickers to select the appropriate ticker at different scales. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) tickers = NonEmpty(Seq(Instance(Ticker)), help=""" A list of ``Ticker`` objects to combine at different scales in order to generate tick values. The supplied tickers should be in order. Specifically, if S comes before T, then it should be the case that: .. code-block:: javascript S.get_max_interval() < T.get_min_interval() """)
class BaseSingleIntervalTicker(ContinuousTicker): ''' Base class for single interval tickers. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs)
[docs] class SingleIntervalTicker(BaseSingleIntervalTicker): ''' Generate evenly spaced ticks at a fixed interval regardless of scale. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) interval = Required(Float, help=""" The interval between adjacent ticks. """)
[docs] class DaysTicker(BaseSingleIntervalTicker): ''' Generate ticks spaced apart by specific, even multiples of days. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) days = Seq(Int, default=[], help=""" The intervals of days to use. """) num_minor_ticks = Override(default=0)
[docs] class MonthsTicker(BaseSingleIntervalTicker): ''' Generate ticks spaced apart by specific, even multiples of months. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) months = Seq(Int, default=[], help=""" The intervals of months to use. """)
[docs] class YearsTicker(BaseSingleIntervalTicker): ''' Generate ticks spaced apart even numbers of years. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs)
[docs] class BasicTicker(AdaptiveTicker): ''' Generate ticks on a linear scale. .. note:: This class may be renamed to ``LinearTicker`` in the future. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs)
[docs] class LogTicker(AdaptiveTicker): ''' Generate ticks on a log scale. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) mantissas = Override(default=[1, 5])
[docs] class MercatorTicker(BasicTicker): ''' Generate nice lat/lon ticks form underlying WebMercator coordinates. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) dimension = Nullable(Enum(LatLon), help=""" Specify whether to generate ticks for Latitude or Longitude. Projected coordinates are not separable, computing Latitude and Longitude tick locations from Web Mercator requires considering coordinates from both dimensions together. Use this property to specify which result should be returned. Typically, if the ticker is for an x-axis, then dimension should be ``"lon"`` and if the ticker is for a y-axis, then the dimension should be `"lat"``. In order to prevent hard to debug errors, there is no default value for dimension. Using an un-configured ``MercatorTicker`` will result in a validation error and a JavaScript console error. """) @error(MISSING_MERCATOR_DIMENSION) def _check_missing_dimension(self): if self.dimension is None: return str(self)
[docs] class CategoricalTicker(Ticker): ''' Generate ticks for categorical ranges. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs)
ONE_MILLI = 1.0 ONE_SECOND = 1000.0 ONE_MINUTE = 60.0 * ONE_SECOND ONE_HOUR = 60 * ONE_MINUTE ONE_DAY = 24 * ONE_HOUR ONE_MONTH = 30 * ONE_DAY # An approximation, obviously. ONE_YEAR = 365 * ONE_DAY
[docs] class DatetimeTicker(CompositeTicker): ''' Generate nice ticks across different date and time scales. ''' # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) num_minor_ticks = Override(default=0) # TODO: (bev) InstanceDefault for this, someday tickers = Override(default=lambda: [ AdaptiveTicker( mantissas=[1, 2, 5], base=10, min_interval=0, max_interval=500*ONE_MILLI, num_minor_ticks=0, ), AdaptiveTicker( mantissas=[1, 2, 5, 10, 15, 20, 30], base=60, min_interval=ONE_SECOND, max_interval=30*ONE_MINUTE, num_minor_ticks=0, ), AdaptiveTicker( mantissas=[1, 2, 4, 6, 8, 12], base=24, min_interval=ONE_HOUR, max_interval=12*ONE_HOUR, num_minor_ticks=0, ), DaysTicker(days=list(range(1, 32))), DaysTicker(days=list(range(1, 31, 3))), DaysTicker(days=[1, 8, 15, 22]), DaysTicker(days=[1, 15]), MonthsTicker(months=list(range(0, 12, 1))), MonthsTicker(months=list(range(0, 12, 2))), MonthsTicker(months=list(range(0, 12, 4))), MonthsTicker(months=list(range(0, 12, 6))), YearsTicker(), ])
[docs] class BinnedTicker(Ticker): """ Ticker that aligns ticks exactly at bin boundaries of a scanning color mapper. """ # explicit __init__ to support Init signatures def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) mapper = Instance(ScanningColorMapper, help=""" A scanning color mapper (e.g. ``EqHistColorMapper``) to use. """) num_major_ticks = Either(Int, Auto, default=8, help=""" The number of major tick positions to show or "auto" to use the number of bins provided by the mapper. """)
#----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------