This docs on this page refers to a PREVIOUS VERSION. For the latest stable release, go to https://docs.bokeh.org/

Archived docs for versions <= 1.0.4 have had to be modified from their original published configuration, and may be missing some features (e.g. source listing)

All users are encourage to update to version 1.1 or later, as soon as they are able.

Bokeh Docs

streamline

< stocks | back to Gallery | quiver >

          from __future__ import division
          
          import numpy as np
          
          from bokeh.layouts import gridplot
          from bokeh.plotting import figure, show, output_file
          
          def streamlines(x, y, u, v, density=1):
              ''' Return streamlines of a vector flow.
          
              * x and y are 1d arrays defining an *evenly spaced* grid.
              * u and v are 2d arrays (shape [y,x]) giving velocities.
              * density controls the closeness of the streamlines. For different
                densities in each direction, use a tuple or list [densityx, densityy].
          
              '''
          
              ## Set up some constants - size of the grid used.
              NGX = len(x)
              NGY = len(y)
          
              ## Constants used to convert between grid index coords and user coords.
              DX = x[1]-x[0]
              DY = y[1]-y[0]
              XOFF = x[0]
              YOFF = y[0]
          
              ## Now rescale velocity onto axes-coordinates
              u = u / (x[-1]-x[0])
              v = v / (y[-1]-y[0])
              speed = np.sqrt(u*u+v*v)
              ## s (path length) will now be in axes-coordinates, but we must
              ## rescale u for integrations.
              u *= NGX
              v *= NGY
              ## Now u and v in grid-coordinates.
          
              NBX = int(30*density)
              NBY = int(30*density)
              blank = np.zeros((NBY,NBX))
          
              bx_spacing = NGX/float(NBX-1)
              by_spacing = NGY/float(NBY-1)
          
              def blank_pos(xi, yi):
                  return int((xi / bx_spacing) + 0.5), \
                         int((yi / by_spacing) + 0.5)
          
              def value_at(a, xi, yi):
                  if type(xi) == np.ndarray:
                      x = xi.astype(np.int)
                      y = yi.astype(np.int)
                  else:
                      x = np.int(xi)
                      y = np.int(yi)
                  a00 = a[y,x]
                  a01 = a[y,x+1]
                  a10 = a[y+1,x]
                  a11 = a[y+1,x+1]
                  xt = xi - x
                  yt = yi - y
                  a0 = a00*(1-xt) + a01*xt
                  a1 = a10*(1-xt) + a11*xt
                  return a0*(1-yt) + a1*yt
          
              def rk4_integrate(x0, y0):
                  ## This function does RK4 forward and back trajectories from
                  ## the initial conditions, with the odd 'blank array'
                  ## termination conditions. TODO tidy the integration loops.
          
                  def f(xi, yi):
                      dt_ds = 1./value_at(speed, xi, yi)
                      ui = value_at(u, xi, yi)
                      vi = value_at(v, xi, yi)
                      return ui*dt_ds, vi*dt_ds
          
                  def g(xi, yi):
                      dt_ds = 1./value_at(speed, xi, yi)
                      ui = value_at(u, xi, yi)
                      vi = value_at(v, xi, yi)
                      return -ui*dt_ds, -vi*dt_ds
          
                  check = lambda xi, yi: xi>=0 and xi<NGX-1 and yi>=0 and yi<NGY-1
          
                  bx_changes = []
                  by_changes = []
          
                  ## Integrator function
                  def rk4(x0, y0, f):
                      ds = 0.01 #min(1./NGX, 1./NGY, 0.01)
                      stotal = 0
                      xi = x0
                      yi = y0
                      xb, yb = blank_pos(xi, yi)
                      xf_traj = []
                      yf_traj = []
                      while check(xi, yi):
                          # Time step. First save the point.
                          xf_traj.append(xi)
                          yf_traj.append(yi)
                          # Next, advance one using RK4
                          try:
                              k1x, k1y = f(xi, yi)
                              k2x, k2y = f(xi + .5*ds*k1x, yi + .5*ds*k1y)
                              k3x, k3y = f(xi + .5*ds*k2x, yi + .5*ds*k2y)
                              k4x, k4y = f(xi + ds*k3x, yi + ds*k3y)
                          except IndexError:
                              # Out of the domain on one of the intermediate steps
                              break
                          xi += ds*(k1x+2*k2x+2*k3x+k4x) / 6.
                          yi += ds*(k1y+2*k2y+2*k3y+k4y) / 6.
                          # Final position might be out of the domain
                          if not check(xi, yi): break
                          stotal += ds
                          # Next, if s gets to thres, check blank.
                          new_xb, new_yb = blank_pos(xi, yi)
                          if new_xb != xb or new_yb != yb:
                              # New square, so check and colour. Quit if required.
                              if blank[new_yb,new_xb] == 0:
                                  blank[new_yb,new_xb] = 1
                                  bx_changes.append(new_xb)
                                  by_changes.append(new_yb)
                                  xb = new_xb
                                  yb = new_yb
                              else:
                                  break
                          if stotal > 2:
                              break
                      return stotal, xf_traj, yf_traj
          
                  integrator = rk4
          
                  sf, xf_traj, yf_traj = integrator(x0, y0, f)
                  sb, xb_traj, yb_traj = integrator(x0, y0, g)
                  stotal = sf + sb
                  x_traj = xb_traj[::-1] + xf_traj[1:]
                  y_traj = yb_traj[::-1] + yf_traj[1:]
          
                  ## Tests to check length of traj. Remember, s in units of axes.
                  if len(x_traj) < 1: return None
                  if stotal > .2:
                      initxb, inityb = blank_pos(x0, y0)
                      blank[inityb, initxb] = 1
                      return x_traj, y_traj
                  else:
                      for xb, yb in zip(bx_changes, by_changes):
                          blank[yb, xb] = 0
                      return None
          
              ## A quick function for integrating trajectories if blank==0.
              trajectories = []
              def traj(xb, yb):
                  if xb < 0 or xb >= NBX or yb < 0 or yb >= NBY:
                      return
                  if blank[yb, xb] == 0:
                      t = rk4_integrate(xb*bx_spacing, yb*by_spacing)
                      if t != None:
                          trajectories.append(t)
          
              ## Now we build up the trajectory set. I've found it best to look
              ## for blank==0 along the edges first, and work inwards.
              for indent in range((max(NBX,NBY))//2):
                  for xi in range(max(NBX,NBY)-2*indent):
                      traj(xi+indent, indent)
                      traj(xi+indent, NBY-1-indent)
                      traj(indent, xi+indent)
                      traj(NBX-1-indent, xi+indent)
          
              xs = [np.array(t[0])*DX+XOFF for t in trajectories]
              ys = [np.array(t[1])*DY+YOFF for t in trajectories]
          
              return xs, ys
          
          xx = np.linspace(-3, 3, 100)
          yy = np.linspace(-3, 3, 100)
          
          Y, X = np.meshgrid(xx, yy)
          U = -1 - X**2 + Y
          V = 1 + X - Y**2
          speed = np.sqrt(U*U + V*V)
          theta = np.arctan(V/U)
          
          x0 = X[::2, ::2].flatten()
          y0 = Y[::2, ::2].flatten()
          length = speed[::2, ::2].flatten()/40
          angle = theta[::2, ::2].flatten()
          x1 = x0 + length * np.cos(angle)
          y1 = y0 + length * np.sin(angle)
          
          xs, ys = streamlines(xx, yy, U.T, V.T, density=2)
          
          cm = np.array(["#C7E9B4", "#7FCDBB", "#41B6C4", "#1D91C0", "#225EA8", "#0C2C84"])
          ix = ((length-length.min())/(length.max()-length.min())*5).astype('int')
          colors = cm[ix]
          
          p1 = figure(x_range=(-3,3 ), y_range=(-3, 3))
          p1.segment(x0, y0, x1, y1, color=colors, line_width=2)
          
          p2 = figure(x_range=p1.x_range, y_range=p1.y_range)
          p2.multi_line(xs, ys, color="#ee6666", line_width=2, line_alpha=0.8)
          
          output_file("vector.html", title="vector.py example")
          
          show(gridplot([[p1,p2]], plot_width=400, plot_height=400))  # open a browser