Source code for bokeh.models.plots

''' Models for representing top-level plot objects.

'''
from __future__ import absolute_import

from ..core.enums import Location, OutputBackend
from ..core.properties import Bool, Dict, Enum, Include, Instance, Int, List, Override, String, Float
from ..core.property_mixins import LineProps, FillProps
from ..core.query import find
from ..core.validation import error, warning
from ..core.validation.errors import REQUIRED_RANGE, REQUIRED_SCALE, INCOMPATIBLE_SCALE_AND_RANGE
from ..core.validation.warnings import MISSING_RENDERERS, NO_DATA_RENDERERS, SNAPPED_TOOLBAR_ANNOTATIONS
from ..util.deprecation import deprecated
from ..util.plot_utils import _list_attr_splat, _select_helper
from ..util.string import nice_join

from .annotations import Legend, Title
from .axes import Axis
from .glyphs import Glyph
from .grids import Grid
from .layouts import LayoutDOM
from .ranges import Range, FactorRange, DataRange1d, Range1d
from .renderers import DataRenderer, DynamicImageRenderer, GlyphRenderer, Renderer, TileRenderer
from .scales import Scale, CategoricalScale, LinearScale, LogScale
from .sources import DataSource, ColumnDataSource
from .tools import Tool, Toolbar

def _check_conflicting_kwargs(a1, a2, kwargs):
    if a1 in kwargs and a2 in kwargs:
        raise ValueError("Conflicting properties set on plot: %r and %r" % (a1, a2))

[docs]class Plot(LayoutDOM): ''' Model representing a plot, containing glyphs, guides, annotations. '''
[docs] def __init__(self, **kwargs): ''' ''' _check_conflicting_kwargs("toolbar", "tools", kwargs) _check_conflicting_kwargs("toolbar", "logo", kwargs) if "toolbar" not in kwargs: tools = kwargs.pop('tools', []) logo = kwargs.pop('logo', 'normal') kwargs["toolbar"] = Toolbar(tools=tools, logo=logo) super(LayoutDOM, self).__init__(**kwargs)
[docs] def select(self, *args, **kwargs): ''' Query this object and all of its references for objects that match the given selector. There are a few different ways to call the ``select`` method. The most general is to supply a JSON-like query dictionary as the single argument or as keyword arguments: Args: selector (JSON-like) : some sample text Keyword Arguments: kwargs : query dict key/values as keyword arguments For convenience, queries on just names can be made by supplying the ``name`` string as the single parameter: Args: name (str) : the name to query on Also queries on just type can be made simply by supplying the ``Model`` subclass as the single parameter: Args: type (Model) : the type to query on Returns: seq[Model] Examples: .. code-block:: python # These two are equivalent p.select({"type": HoverTool}) p.select(HoverTool) # These two are also equivalent p.select({"name": "mycircle"}) p.select("mycircle") # Keyword arguments can be supplied in place of selector dict p.select({"name": "foo", "type": HoverTool}) p.select(name="foo", type=HoverTool) ''' selector = _select_helper(args, kwargs) # Want to pass selector that is a dictionary return _list_attr_splat(find(self.references(), selector, {'plot': self}))
[docs] def row(self, row, gridplot): ''' Return whether this plot is in a given row of a GridPlot. Args: row (int) : index of the row to test gridplot (GridPlot) : the GridPlot to check Returns: bool ''' return self in gridplot.row(row)
[docs] def column(self, col, gridplot): ''' Return whether this plot is in a given column of a GridPlot. Args: col (int) : index of the column to test gridplot (GridPlot) : the GridPlot to check Returns: bool ''' return self in gridplot.column(col)
def _axis(self, *sides): objs = [] for s in sides: objs.extend(getattr(self, s, [])) axis = [obj for obj in objs if isinstance(obj, Axis)] return _list_attr_splat(axis) @property def xaxis(self): ''' Splattable list of :class:`~bokeh.models.axes.Axis` objects for the x dimension. ''' return self._axis("above", "below") @property def yaxis(self): ''' Splattable list of :class:`~bokeh.models.axes.Axis` objects for the y dimension. ''' return self._axis("left", "right") @property def axis(self): ''' Splattable list of :class:`~bokeh.models.axes.Axis` objects. ''' return _list_attr_splat(self.xaxis + self.yaxis) @property def legend(self): ''' Splattable list of :class:`~bokeh.models.annotations.Legend` objects. ''' legends = [obj for obj in self.renderers if isinstance(obj, Legend)] return _list_attr_splat(legends) def _grid(self, dimension): grid = [obj for obj in self.renderers if isinstance(obj, Grid) and obj.dimension==dimension] return _list_attr_splat(grid) @property def xgrid(self): ''' Splattable list of :class:`~bokeh.models.grids.Grid` objects for the x dimension. ''' return self._grid(0) @property def ygrid(self): ''' Splattable list of :class:`~bokeh.models.grids.Grid` objects for the y dimension. ''' return self._grid(1) @property def grid(self): ''' Splattable list of :class:`~bokeh.models.grids.Grid` objects. ''' return _list_attr_splat(self.xgrid + self.ygrid) @property def tools(self): return self.toolbar.tools @tools.setter def tools(self, tools): self.toolbar.tools = tools
[docs] def add_layout(self, obj, place='center'): ''' Adds an object to the plot in a specified place. Args: obj (Renderer) : the object to add to the Plot place (str, optional) : where to add the object (default: 'center') Valid places are: 'left', 'right', 'above', 'below', 'center'. Returns: None ''' valid_places = ['left', 'right', 'above', 'below', 'center'] if place not in valid_places: raise ValueError( "Invalid place '%s' specified. Valid place values are: %s" % (place, nice_join(valid_places)) ) if hasattr(obj, 'plot'): if obj.plot is not None: raise ValueError("object to be added already has 'plot' attribute set") obj.plot = self self.renderers.append(obj) if place is not 'center': getattr(self, place).append(obj)
[docs] def add_tools(self, *tools): ''' Adds tools to the plot. Args: *tools (Tool) : the tools to add to the Plot Returns: None ''' for tool in tools: if not isinstance(tool, Tool): raise ValueError("All arguments to add_tool must be Tool subclasses.") if hasattr(tool, 'overlay'): self.renderers.append(tool.overlay) self.toolbar.tools.append(tool)
[docs] def add_glyph(self, source_or_glyph, glyph=None, **kw): ''' Adds a glyph to the plot with associated data sources and ranges. This function will take care of creating and configuring a Glyph object, and then add it to the plot's list of renderers. Args: source (DataSource) : a data source for the glyphs to all use glyph (Glyph) : the glyph to add to the Plot Keyword Arguments: Any additional keyword arguments are passed on as-is to the Glyph initializer. Returns: GlyphRenderer ''' if glyph is not None: source = source_or_glyph else: source, glyph = ColumnDataSource(), source_or_glyph if not isinstance(source, DataSource): raise ValueError("'source' argument to add_glyph() must be DataSource subclass") if not isinstance(glyph, Glyph): raise ValueError("'glyph' argument to add_glyph() must be Glyph subclass") g = GlyphRenderer(data_source=source, glyph=glyph, **kw) self.renderers.append(g) return g
[docs] def add_tile(self, tile_source, **kw): ''' Adds new TileRenderer into the Plot.renderers Args: tile_source (TileSource) : a tile source instance which contain tileset configuration Keyword Arguments: Additional keyword arguments are passed on as-is to the tile renderer Returns: TileRenderer : TileRenderer ''' tile_renderer = TileRenderer(tile_source=tile_source, **kw) self.renderers.append(tile_renderer) return tile_renderer
[docs] def add_dynamic_image(self, image_source, **kw): ''' Adds new DynamicImageRenderer into the Plot.renderers Args: image_source (ImageSource) : a image source instance which contain image configuration Keyword Arguments: Additional keyword arguments are passed on as-is to the dynamic image renderer Returns: DynamicImageRenderer : DynamicImageRenderer ''' deprecated((0, 12, 7), "add_dynamic_image", "GeoViews for GIS functions on top of Bokeh (http://geo.holoviews.org)") image_renderer = DynamicImageRenderer(image_source=image_source, **kw) self.renderers.append(image_renderer) return image_renderer
@error(REQUIRED_RANGE) def _check_required_range(self): missing = [] if not self.x_range: missing.append('x_range') if not self.y_range: missing.append('y_range') if missing: return ", ".join(missing) + " [%s]" % self @error(REQUIRED_SCALE) def _check_required_scale(self): missing = [] if not self.x_scale: missing.append('x_scale') if not self.y_scale: missing.append('y_scale') if missing: return ", ".join(missing) + " [%s]" % self @error(INCOMPATIBLE_SCALE_AND_RANGE) def _check_compatible_scale_and_ranges(self): incompatible = [] x_ranges = list(self.extra_x_ranges.values()) if self.x_range: x_ranges.append(self.x_range) y_ranges = list(self.extra_y_ranges.values()) if self.y_range: y_ranges.append(self.y_range) for rng in x_ranges: if isinstance(rng, (DataRange1d, Range1d)) and not isinstance(self.x_scale, (LinearScale, LogScale)): incompatible.append("incompatibility on x-dimension: %s, %s" %(rng, self.x_scale)) elif isinstance(rng, FactorRange) and not isinstance(self.x_scale, CategoricalScale): incompatible.append("incompatibility on x-dimension: %s/%s" %(rng, self.x_scale)) # special case because CategoricalScale is a subclass of LinearScale, should be removed in future if isinstance(rng, (DataRange1d, Range1d)) and isinstance(self.x_scale, CategoricalScale): incompatible.append("incompatibility on x-dimension: %s, %s" %(rng, self.x_scale)) for rng in y_ranges: if isinstance(rng, (DataRange1d, Range1d)) and not isinstance(self.y_scale, (LinearScale, LogScale)): incompatible.append("incompatibility on y-dimension: %s/%s" %(rng, self.y_scale)) elif isinstance(rng, FactorRange) and not isinstance(self.y_scale, CategoricalScale): incompatible.append("incompatibility on y-dimension: %s/%s" %(rng, self.y_scale)) # special case because CategoricalScale is a subclass of LinearScale, should be removed in future if isinstance(rng, (DataRange1d, Range1d)) and isinstance(self.y_scale, CategoricalScale): incompatible.append("incompatibility on y-dimension: %s, %s" %(rng, self.y_scale)) if incompatible: return ", ".join(incompatible) + " [%s]" % self @warning(MISSING_RENDERERS) def _check_missing_renderers(self): if len(self.renderers) == 0: return str(self) @warning(NO_DATA_RENDERERS) def _check_no_data_renderers(self): if len(self.select(DataRenderer)) == 0: return str(self) @warning(SNAPPED_TOOLBAR_ANNOTATIONS) def _check_snapped_toolbar_and_axis(self): if not self.toolbar_sticky: return if self.toolbar_location is None: return objs = getattr(self, self.toolbar_location) if len(objs) > 0: return str(self) x_range = Instance(Range, help=""" The (default) data range of the horizontal dimension of the plot. """) y_range = Instance(Range, help=""" The (default) data range of the vertical dimension of the plot. """) @classmethod def _scale(cls, scale): if scale in ["auto", "linear"]: return LinearScale() elif scale == "log": return LogScale() if scale == "categorical": return CategoricalScale() else: raise ValueError("Unknown mapper_type: %s" % scale) x_scale = Instance(Scale, default=lambda: LinearScale(), help=""" What kind of scale to use to convert x-coordinates in data space into x-coordinates in screen space. """) y_scale = Instance(Scale, default=lambda: LinearScale(), help=""" What kind of scale to use to convert y-coordinates in data space into y-coordinates in screen space. """) extra_x_ranges = Dict(String, Instance(Range), help=""" Additional named ranges to make available for mapping x-coordinates. This is useful for adding additional axes. """) extra_y_ranges = Dict(String, Instance(Range), help=""" Additional named ranges to make available for mapping y-coordinates. This is useful for adding additional axes. """) hidpi = Bool(default=True, help=""" Whether to use HiDPI mode when available. """) title = Instance(Title, default=lambda: Title(text=""), help=""" A title for the plot. Can be a text string or a Title annotation. """) title_location = Enum(Location, default="above", help=""" Where the title will be located. Titles on the left or right side will be rotated. """) outline_props = Include(LineProps, help=""" The %s for the plot border outline. """) outline_line_color = Override(default="#e5e5e5") renderers = List(Instance(Renderer), help=""" A list of all renderers for this plot, including guides and annotations in addition to glyphs and markers. This property can be manipulated by hand, but the ``add_glyph`` and ``add_layout`` methods are recommended to help make sure all necessary setup is performed. """) toolbar = Instance(Toolbar, help=""" The toolbar associated with this plot which holds all the tools. The toolbar is automatically created with the plot. """) toolbar_location = Enum(Location, default="right", help=""" Where the toolbar will be located. If set to None, no toolbar will be attached to the plot. """) toolbar_sticky = Bool(default=True, help=""" Stick the toolbar to the edge of the plot. Default: True. If False, the toolbar will be outside of the axes, titles etc. """) left = List(Instance(Renderer), help=""" A list of renderers to occupy the area to the left of the plot. """) right = List(Instance(Renderer), help=""" A list of renderers to occupy the area to the right of the plot. """) above = List(Instance(Renderer), help=""" A list of renderers to occupy the area above of the plot. """) below = List(Instance(Renderer), help=""" A list of renderers to occupy the area below of the plot. """) plot_height = Int(600, help=""" Total height of the entire plot (including any axes, titles, border padding, etc.) .. note:: This corresponds directly to the height of the HTML canvas that will be used. """) plot_width = Int(600, help=""" Total width of the entire plot (including any axes, titles, border padding, etc.) .. note:: This corresponds directly to the width of the HTML canvas that will be used. """) inner_width = Int(readonly=True, help=""" This is the exact width of the plotting canvas, i.e. the width of the actual plot, without toolbars etc. Note this is computed in a web browser, so this property will work only in backends capable of bidirectional communication (server, notebook). .. note:: This is an experimental feature and the API may change in near future. """) inner_height = Int(readonly=True, help=""" This is the exact height of the plotting canvas, i.e. the height of the actual plot, without toolbars etc. Note this is computed in a web browser, so this property will work only in backends capable of bidirectional communication (server, notebook). .. note:: This is an experimental feature and the API may change in near future. """) layout_width = Int(readonly=True, help=""" This is the exact width of the layout, i.e. the height of the actual plot, with toolbars etc. Note this is computed in a web browser, so this property will work only in backends capable of bidirectional communication (server, notebook). .. note:: This is an experimental feature and the API may change in near future. """) layout_height = Int(readonly=True, help=""" This is the exact height of the layout, i.e. the height of the actual plot, with toolbars etc. Note this is computed in a web browser, so this property will work only in backends capable of bidirectional communication (server, notebook). .. note:: This is an experimental feature and the API may change in near future. """) background_props = Include(FillProps, help=""" The %s for the plot background style. """) background_fill_color = Override(default='#ffffff') border_props = Include(FillProps, help=""" The %s for the plot border style. """) border_fill_color = Override(default='#ffffff') min_border_top = Int(help=""" Minimum size in pixels of the padding region above the top of the central plot region. .. note:: This is a *minimum*. The padding region may expand as needed to accommodate titles or axes, etc. """) min_border_bottom = Int(help=""" Minimum size in pixels of the padding region below the bottom of the central plot region. .. note:: This is a *minimum*. The padding region may expand as needed to accommodate titles or axes, etc. """) min_border_left = Int(help=""" Minimum size in pixels of the padding region to the left of the central plot region. .. note:: This is a *minimum*. The padding region may expand as needed to accommodate titles or axes, etc. """) min_border_right = Int(help=""" Minimum size in pixels of the padding region to the right of the central plot region. .. note:: This is a *minimum*. The padding region may expand as needed to accommodate titles or axes, etc. """) min_border = Int(5, help=""" A convenience property to set all all the ``min_border_X`` properties to the same value. If an individual border property is explicitly set, it will override ``min_border``. """) h_symmetry = Bool(True, help=""" Whether the total horizontal padding on both sides of the plot will be made equal (the left or right padding amount, whichever is larger). """) v_symmetry = Bool(False, help=""" Whether the total vertical padding on both sides of the plot will be made equal (the top or bottom padding amount, whichever is larger). """) lod_factor = Int(10, help=""" Decimation factor to use when applying level-of-detail decimation. """) lod_threshold = Int(2000, help=""" A number of data points, above which level-of-detail downsampling may be performed by glyph renderers. Set to ``None`` to disable any level-of-detail downsampling. """) lod_interval = Int(300, help=""" Interval (in ms) during which an interactive tool event will enable level-of-detail downsampling. """) lod_timeout = Int(500, help=""" Timeout (in ms) for checking whether interactive tool events are still occurring. Once level-of-detail mode is enabled, a check is made every ``lod_timeout`` ms. If no interactive tool events have happened, level-of-detail mode is disabled. """) output_backend = Enum(OutputBackend, default="canvas", help=""" Specify the output backend for the plot area. Default is HTML5 Canvas. .. note:: When set to ``webgl``, glyphs without a WebGL rendering implementation will fall back to rendering onto 2D canvas. """) match_aspect = Bool(default=False, help=""" Specify the aspect ratio behavior of the plot. Aspect ratio is defined as the ratio of width over height. This property controls whether Bokeh should attempt the match the (width/height) of *data space* to the (width/height) in pixels of *screen space*. Default is ``False`` which indicates that the *data* aspect ratio and the *screen* aspect ratio vary independently. ``True`` indicates that the plot aspect ratio of the axes will match the aspect ratio of the pixel extent the axes. The end result is that a 1x1 area in data space is a square in pixels, and conversely that a 1x1 pixel is a square in data units. .. note:: This setting only takes effect when there are two dataranges. This setting only sets the initial plot draw and subsequent resets. It is possible for tools (single axis zoom, unconstrained box zoom) to change the aspect ratio. """) aspect_scale = Float(default=1, help=""" A value to be given for increased aspect ratio control. This value is added multiplicatively to the calculated value required for ``match_aspect``. ``aspect_scale`` is defined as the ratio of width over height of the figure. For example, a plot with ``aspect_scale`` value of 2 will result in a square in *data units* to be drawn on the screen as a rectangle with a pixel width twice as long as its pixel height. .. note:: This setting only takes effect if ``match_aspect`` is set to ``True``. """)