Source code for bokeh.models.filters

from __future__ import absolute_import

import inspect
from textwrap import dedent
from types import FunctionType

from ..core.properties import Bool, Dict, Either, Instance, Int, Seq, String
from ..model import Model
from ..util.dependencies import import_required
from ..util.compiler import nodejs_compile, CompilationError

[docs]class Filter(Model): ''' A Filter model represents a filtering operation that returns a row-wise subset of data when applied to a ColumnDataSource. ''' filter = Either(Seq(Int), Seq(Bool), help=""" A list that can be either integer indices or booleans representing a row-wise subset of data. """) def __init__(self, *args, **kw): if len(args) == 1 and "filter" not in kw: kw["filter"] = args[0] super(Filter, self).__init__(**kw)
[docs]class IndexFilter(Filter): ''' An IndexFilter filters data by returning the subset of data at a given set of indices. ''' indices = Seq(Int, help=""" A list of integer indices representing the subset of data to select. """) def __init__(self, *args, **kw): if len(args) == 1 and "indices" not in kw: kw["indices"] = args[0] super(IndexFilter, self).__init__(**kw)
[docs]class BooleanFilter(Filter): ''' A BooleanFilter filters data by returning the subset of data corresponding to indices where the values of the booleans array is True. ''' booleans = Seq(Bool, help=""" A list of booleans indicating which rows of data to select. """) def __init__(self, *args, **kw): if len(args) == 1 and "booleans" not in kw: kw["booleans"] = args[0] super(BooleanFilter, self).__init__(**kw)
[docs]class GroupFilter(Filter): ''' A GroupFilter represents the rows of a ColumnDataSource where the values of the categorical column column_name match the group variable. ''' column_name = String(help=""" The name of the column to perform the group filtering operation on. """) group = String(help=""" The value of the column indicating the rows of data to keep. """) def __init__(self, *args, **kw): if len(args) == 2 and "column_name" not in kw and "group" not in kw: kw["column_name"] = args[0] kw["group"] = args[1] super(GroupFilter, self).__init__(**kw)
[docs]class CustomJSFilter(Filter): ''' Filter data sources with a custom defined JavaScript function. .. warning:: The explicit purpose of this Bokeh Model is to embed *raw JavaScript code* for a browser to execute. If any part of the code is derived from untrusted user inputs, then you must take appropriate care to sanitize the user input prior to passing to Bokeh. ''' @classmethod
[docs] def from_py_func(cls, func): ''' Create a CustomJSFilter instance from a Python function. The fucntion is translated to JavaScript using PyScript. The ``func`` function namespace will contain the variable ``source`` at render time. This will be the data source associated with the CDSView that this filter is added to. ''' if not isinstance(func, FunctionType): raise ValueError('CustomJSFilter.from_py_func only accepts function objects.') pyscript = import_required( 'flexx.pyscript', dedent("""\ To use Python functions for CustomJSFilter, you need Flexx '("conda install -c bokeh flexx" or "pip install flexx")""") ) argspec = inspect.getargspec(func) default_names = argspec.args default_values = argspec.defaults or [] if len(default_names) - len(default_values) != 0: raise ValueError("Function may only contain keyword arguments.") # should the following be all of the values need to be Models? if default_values and not any([isinstance(value, Model) for value in default_values]): raise ValueError("Default value must be a plot object.") func_kwargs = dict(zip(default_names, default_values)) code = pyscript.py2js(func, 'filter') + 'return filter(%s);\n' % ', '.join(default_names) return cls(code=code, args=func_kwargs)
@classmethod
[docs] def from_coffeescript(cls, code, args={}): ''' Create a CustomJSFilter instance from CoffeeScript snippets. The function bodies are translated to JavaScript functions using node and therefore require return statements. The ``code`` function namespace will contain the variable ``source`` at render time. This will be the data source associated with the CDSView that this filter is added to. ''' compiled = nodejs_compile(code, lang="coffeescript", file="???") if "error" in compiled: raise CompilationError(compiled.error) else: return cls(code=compiled.code, args=args)
args = Dict(String, Instance(Model), help=""" A mapping of names to Bokeh plot objects. These objects are made available to the callback code snippet as the values of named parameters to the callback. """) code = String(default="", help=""" A snippet of JavaScript code to filter data contained in a columnar data source. The code is made into the body of a function, and all of of the named objects in ``args`` are available as parameters that the code can use. The variable ``source`` will contain the data source that is associated with the CDSView this filter is added to. The code should either return the indices of the subset or an array of booleans to use to subset data source rows. Example: .. code-block:: javascript code = ''' var indices = []; for (var i = 0; i <= source.data['some_column'].length; i++){ if (source.data['some_column'][i] == 'some_value') { indices.push(i) } } return indices; ''' .. note:: Use ``CustomJS.from_coffeescript()`` for CoffeeScript source code. """)