This docs on this page refers to a PREVIOUS VERSION. For the latest stable release, go to https://docs.bokeh.org/

Archived docs for versions <= 1.0.4 have had to be modified from their original published configuration, and may be missing some features (e.g. source listing)

All users are encourage to update to version 1.1 or later, as soon as they are able.

Working in the Notebook — Bokeh 0.12.4 documentation

Working in the Notebook

Inline Plots

To display Bokeh plots inline in an Jupyter notebook, use the output_notebook() function from bokeh.io instead of (or in addition to) the output_file() function we have seen previously. No other modifications are required. When show() is called, the plot will be displayed inline in the next notebook output cell. You can see a screenshot below:

../../_images/notebook_inline.png

Note

As a convenience, output_notebook() is also importable from the bokeh.charts and bokeh.plotting modules.

Notebook Handles

It is possible to update a previously shown plot in-place. When the argument notebook_handle=True is passed to show() then a handle object is returned. This handle object can be used with the push_notebook() function to update the plot with any recent changes to plots properties, data source values, etc.

The following screenshots walk through the basic usage of notebook handles.

../../_images/notebook_comms1.png
  • Next, create some plots, and make sure to pass notebook_handle=True to show():
../../_images/notebook_comms2.png
  • Looking at the handle, see that it is associated with the output cell for In[2] that was just displayed:
../../_images/notebook_comms3.png
  • Now, update any properties of the plot, then call push_notebook() with the handle:
../../_images/notebook_comms4.png
  • After doing so, note that the earlier output cell for In[2] has changed (without being re-executed)
../../_images/notebook_comms5.png

More detailed demonstrations of using notebook handles can be found in the following example notebooks:

Jupyter Interactors

It is possible to drive updates to Bokeh plots using Jupyter notebook widgets, known as interactors. The key doing this is the push_notebook() function described above. Typically it is called in the update callback for the interactors, to update the plot from widget values. A screenshot of the examples/howto/notebook_comms/Jupyter Interactors.ipynb example notebook is shown below:

../../_images/notebook_interactors.png