This docs on this page refers to a PREVIOUS VERSION. For the latest stable release, go to https://docs.bokeh.org/

Archived docs for versions <= 1.0.4 have had to be modified from their original published configuration, and may be missing some features (e.g. source listing)

All users are encourage to update to version 1.1 or later, as soon as they are able.

bokeh.transform — Bokeh 1.0.3 documentation

bokeh.transform

Helper functions for applying client-side computations such as transformations to data fields or ColumnDataSource expressions.

cumsum(field, include_zero=False)[source]

Create a Create a DataSpec dict to generate a CumSum expression for a ColumnDataSource.

Examples

p.wedge(start_angle=cumsum('angle', include_zero=True),
        end_angle=cumsum('angle'),
        ...)

will generate a CumSum expressions that sum the "angle" column of a data source. For the start_angle value, the cumulative sums will start with a zero value. For start_angle, no initial zero will be added (i.e. the sums will start with the first angle value, and include the last).

dodge(field_name, value, range=None)[source]

Create a DataSpec dict to apply a client-side Jitter transformation to a ColumnDataSource column.

Parameters:
  • field_name (str) – a field name to configure DataSpec with
  • value (float) – the fixed offset to add to column data
  • range (Range, optional) – a range to use for computing synthetic coordinates when necessary, e.g. a FactorRange when the column data is categorical (default: None)
Returns:

dict

factor_cmap(field_name, palette, factors, start=0, end=None, nan_color='gray')[source]

Create a DataSpec dict to apply a client-side CategoricalColorMapper transformation to a ColumnDataSource column.

Parameters:
  • field_name (str) – a field name to configure DataSpec with
  • palette (seq[color]) – a list of colors to use for colormapping
  • factors (seq) – a sequences of categorical factors corresponding to the palette
  • start (int, optional) – a start slice index to apply when the column data has factors with multiple levels. (default: 0)
  • end (int, optional) – an end slice index to apply when the column data has factors with multiple levels. (default: None)
  • nan_color (color, optional) – a default color to use when mapping data from a column does not succeed (default: “gray”)
Returns:

dict

factor_mark(field_name, markers, factors, start=0, end=None)[source]

Create a DataSpec dict to apply a client-side CategoricalMarkerMapper transformation to a ColumnDataSource column.

Note

This transform is primarily only useful with scatter, which can be parameterized by glyph type.

Parameters:
  • field_name (str) – a field name to configure DataSpec with
  • markers (seq[string]) – a list of markers to use map to
  • factors (seq) – a sequences of categorical factors corresponding to the palette
  • start (int, optional) – a start slice index to apply when the column data has factors with multiple levels. (default: 0)
  • end (int, optional) – an end slice index to apply when the column data has factors with multiple levels. (default: None)
Returns:

dict

jitter(field_name, width, mean=0, distribution='uniform', range=None)[source]

Create a DataSpec dict to apply a client-side Jitter transformation to a ColumnDataSource column.

Parameters:
  • field_name (str) – a field name to configure DataSpec with
  • width (float) – the width of the random distribution to apply
  • mean (float, optional) – an offset to apply (default: 0)
  • distribution (str, optional) – "uniform" or "normal" (default: "uniform")
  • range (Range, optional) – a range to use for computing synthetic coordinates when necessary, e.g. a FactorRange when the column data is categorical (default: None)
Returns:

dict

linear_cmap(field_name, palette, low, high, low_color=None, high_color=None, nan_color='gray')[source]

Create a DataSpec dict to apply a client-side LinearColorMapper transformation to a ColumnDataSource column.

Parameters:
  • field_name (str) – a field name to configure DataSpec with
  • palette (seq[color]) – a list of colors to use for colormapping
  • low (float) – a minimum value of the range to map into the palette. Values below this are clamped to low.
  • high (float) – a maximum value of the range to map into the palette. Values above this are clamped to high.
  • low_color (color, optional) – color to be used if data is lower than low value. If None, values lower than low are mapped to the first color in the palette. (default: None)
  • high_color (color, optional) – color to be used if data is higher than high value. If None, values higher than high are mapped to the last color in the palette. (default: None)
  • nan_color (color, optional) – a default color to use when mapping data from a column does not succeed (default: “gray”)
log_cmap(field_name, palette, low, high, low_color=None, high_color=None, nan_color='gray')[source]

Create a DataSpec dict to apply a client-side LogColorMapper transformation to a ColumnDataSource column.

Parameters:
  • field_name (str) – a field name to configure DataSpec with
  • palette (seq[color]) – a list of colors to use for colormapping
  • low (float) – a minimum value of the range to map into the palette. Values below this are clamped to low.
  • high (float) – a maximum value of the range to map into the palette. Values above this are clamped to high.
  • low_color (color, optional) – color to be used if data is lower than low value. If None, values lower than low are mapped to the first color in the palette. (default: None)
  • high_color (color, optional) – color to be used if data is higher than high value. If None, values higher than high are mapped to the last color in the palette. (default: None)
  • nan_color (color, optional) – a default color to use when mapping data from a column does not succeed (default: “gray”)
stack(*fields)[source]

Create a Create a DataSpec dict to generate a Stack expression for a ColumnDataSource.

Examples

p.vbar(bottom=stack("sales", "marketing"), ...

will generate a Stack that sums the "sales" and "marketing" columns of a data source, and use those values as the top coordinate for a VBar.

transform(field_name, transform)[source]

Create a DataSpec dict to apply an arbitrary client-side Transform to a ColumnDataSource column.

Parameters:
  • field_name (str) – A field name to configure DataSpec with
  • transform (Transform) – A transforms to apply to that field
Returns:

dict