clustering#
Example inspired by an example from the scikit-learn project:
http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
import numpy as np
from sklearn import cluster, datasets
from sklearn.preprocessing import StandardScaler
from bokeh.layouts import column, row
from bokeh.plotting import figure, show
N = 50000
PLOT_SIZE = 400
# generate datasets.
np.random.seed(0)
noisy_circles = datasets.make_circles(n_samples=N, factor=.5, noise=.04)
noisy_moons = datasets.make_moons(n_samples=N, noise=.05)
centers = [(-2, 3), (2, 3), (-2, -3), (2, -3)]
blobs1 = datasets.make_blobs(centers=centers, n_samples=N, cluster_std=0.4, random_state=8)
blobs2 = datasets.make_blobs(centers=centers, n_samples=N, cluster_std=0.7, random_state=8)
colors = np.array([x for x in ('#00f', '#0f0', '#f00', '#0ff', '#f0f', '#ff0')])
colors = np.hstack([colors] * 20)
# create clustering algorithms
dbscan = cluster.DBSCAN(eps=.2)
birch = cluster.Birch(n_clusters=2)
means = cluster.MiniBatchKMeans(n_clusters=2)
spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors")
affinity = cluster.AffinityPropagation(damping=.9, preference=-200)
# change here, to select clustering algorithm (note: spectral is slow)
algorithm = dbscan # <- SELECT ALG
plots =[]
for dataset in (noisy_circles, noisy_moons, blobs1, blobs2):
X, y = dataset
X = StandardScaler().fit_transform(X)
# predict cluster memberships
algorithm.fit(X)
if hasattr(algorithm, 'labels_'):
y_pred = algorithm.labels_.astype(int)
else:
y_pred = algorithm.predict(X)
p = figure(output_backend="webgl", title=algorithm.__class__.__name__,
width=PLOT_SIZE, height=PLOT_SIZE)
p.circle(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), alpha=0.1)
plots.append(p)
# generate layout for the plots
layout = column(row(plots[:2]), row(plots[2:]))
show(layout)