multi_line#
This example shows how to plot multiple lines with the multi_line call.
Details
- Bokeh APIs:
figure.multi_line
,bokeh.models.HoverTool
,bokeh.models.TapTool
- More info:
- Keywords:
multi_line, HoverTool, TapTool
from collections import defaultdict
import numpy as np
from scipy.stats import norm
from bokeh.layouts import gridplot
from bokeh.models import HoverTool, TapTool
from bokeh.palettes import Viridis6
from bokeh.plotting import figure, show
mass_spec = defaultdict(list)
RT_x = np.linspace(118, 123, num=50)
norm_dist = norm(loc=120.4).pdf(RT_x)
# Generate several gaussian distributions and spectral lines
for scale, mz in [(1.0, 83), (0.9, 55), (0.6, 98), (0.4, 43), (0.2, 39), (0.12, 29)]:
mass_spec["RT"].append(RT_x)
mass_spec["RT_intensity"].append(norm_dist * scale)
mass_spec["MZ"].append([mz, mz])
mass_spec["MZ_intensity"].append([0, scale])
mass_spec['MZ_tip'].append(mz)
mass_spec['Intensity_tip'].append(scale)
mass_spec['color'] = Viridis6
figure_opts = dict(width=450, height=300)
hover_opts = dict(
tooltips=[('MZ', '@MZ_tip'), ('Rel Intensity', '@Intensity_tip')],
show_arrow=False,
line_policy='next',
)
line_opts = dict(
line_width=5, line_color='color', line_alpha=0.6,
hover_line_color='color', hover_line_alpha=1.0,
source=mass_spec,
)
rt_plot = figure(tools=[HoverTool(**hover_opts), TapTool()], **figure_opts)
rt_plot.multi_line(xs='RT', ys='RT_intensity', legend_field="Intensity_tip", **line_opts)
rt_plot.xaxis.axis_label = "Retention Time (sec)"
rt_plot.yaxis.axis_label = "Intensity"
mz_plot = figure(tools=[HoverTool(**hover_opts), TapTool()], **figure_opts)
mz_plot.multi_line(xs='MZ', ys='MZ_intensity', legend_field="Intensity_tip", **line_opts)
mz_plot.legend.location = "top_center"
mz_plot.xaxis.axis_label = "MZ"
mz_plot.yaxis.axis_label = "Intensity"
show(gridplot([[rt_plot, mz_plot]]))