stocks

< unemployment | back to Gallery | streamline >

import numpy as np

from bokeh.plotting import figure, show, output_file, vplot
from bokeh.sampledata.stocks import AAPL, GOOG, IBM, MSFT

def datetime(x):
    return np.array(x, dtype=np.datetime64)

p1 = figure(x_axis_type = "datetime")
p1.title = "Stock Closing Prices"
p1.grid.grid_line_alpha=0.3
p1.xaxis.axis_label = 'Date'
p1.yaxis.axis_label = 'Price'

p1.line(datetime(AAPL['date']), AAPL['adj_close'], color='#A6CEE3', legend='AAPL')
p1.line(datetime(GOOG['date']), GOOG['adj_close'], color='#B2DF8A', legend='GOOG')
p1.line(datetime(IBM['date']), IBM['adj_close'], color='#33A02C', legend='IBM')
p1.line(datetime(MSFT['date']), MSFT['adj_close'], color='#FB9A99', legend='MSFT')

aapl = np.array(AAPL['adj_close'])
aapl_dates = np.array(AAPL['date'], dtype=np.datetime64)

window_size = 30
window = np.ones(window_size)/float(window_size)
aapl_avg = np.convolve(aapl, window, 'same')

p2 = figure(x_axis_type="datetime")
p2.title = "AAPL One-Month Average"
p2.grid.grid_line_alpha = 0
p2.xaxis.axis_label = 'Date'
p2.yaxis.axis_label = 'Price'
p2.ygrid.band_fill_color = "olive"
p2.ygrid.band_fill_alpha = 0.1

p2.circle(aapl_dates, aapl, size=4, legend='close',
          color='darkgrey', alpha=0.2)

p2.line(aapl_dates, aapl_avg, legend='avg', color='navy')

output_file("stocks.html", title="stocks.py example")

show(vplot(p1,p2))  # open a browser