"""This is the Bokeh charts interface. It gives you a high level API to build
complex plot is a simple way.
This is the Bar class which lets you build your Bar charts just passing
the arguments to the Chart class and calling the proper functions.
It also add a new chained stacked method.
"""
# -----------------------------------------------------------------------------
# Copyright (c) 2012 - 2014, Anaconda, Inc. All rights reserved.
#
# Powered by the Bokeh Development Team.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# Imports
# -----------------------------------------------------------------------------
from __future__ import absolute_import, print_function, division
from ..builder import Builder, create_and_build
from ...models import FactorRange, Range1d
from ..glyphs import BarGlyph
from ...core.properties import Float, Enum, Bool, Override
from ..properties import Dimension
from ..attributes import ColorAttr, CatAttr
from ..operations import Stack, Dodge
from ...core.enums import Aggregation
from ..stats import stats
from ...models.sources import ColumnDataSource
from ..utils import help
# -----------------------------------------------------------------------------
# Classes and functions
# -----------------------------------------------------------------------------
[docs]class BarBuilder(Builder):
"""This is the Bar builder and it is in charge of plotting
Bar chart (grouped and stacked) in an easy and intuitive way.
Essentially, it utilizes a standardized way to ingest the data,
make the proper calculations and generate renderers. The renderers
reference the transformed data, which represent the groups of data
that were derived from the inputs. We additionally make calculations
for the ranges.
The x_range is categorical, and is made either from the label argument
or from the `pandas.DataFrame.index`. The y_range can be supplied as the
parameter continuous_range, or will be calculated as a linear range
(Range1d) based on the supplied values.
The bar builder is and can be further used as a base class for other
builders that might also be performing some aggregation across
derived groups of data.
"""
# ToDo: add label back as a discrete dimension
values = Dimension('values')
dimensions = ['values']
# req_dimensions = [['values']]
default_attributes = {'label': CatAttr(),
'color': ColorAttr(),
'line_color': ColorAttr(default='white'),
'stack': CatAttr(),
'group': CatAttr()}
agg = Enum(Aggregation, default='sum')
max_height = Float(1.0)
min_height = Float(0.0)
bar_width = Float(default=0.8)
fill_alpha = Float(default=0.8)
glyph = BarGlyph
comp_glyph_types = Override(default=[BarGlyph])
label_attributes = ['stack', 'group']
label_only = Bool(False)
values_only = Bool(False)
_perform_stack = False
_perform_group = False
[docs] def setup(self):
if self.attributes['color'].columns is None:
if self.attributes['stack'].columns is not None:
self.attributes['color'].setup(columns=self.attributes['stack'].columns)
if self.attributes['group'].columns is not None:
self.attributes['color'].setup(columns=self.attributes['group'].columns)
if self.attributes['stack'].columns is not None:
self._perform_stack = True
if self.attributes['group'].columns is not None:
self._perform_group = True
# ToDo: perform aggregation validation
# Not given values kw, so using only categorical data
if self.values.dtype.name == 'object' and len(self.attribute_columns) == 0:
# agg must be count
self.agg = 'count'
self.attributes['label'].set_columns(self.values.selection)
else:
pass
self._apply_inferred_index()
if self.xlabel is None:
if self.attributes['label'].columns is not None:
self.xlabel = str(
', '.join(self.attributes['label'].columns).title()).title()
else:
self.xlabel = self.values.selection
if self.ylabel is None:
if not self.label_only:
self.ylabel = '%s( %s )' % (
self.agg.title(), str(self.values.selection).title())
else:
self.ylabel = '%s( %s )' % (
self.agg.title(), ', '.join(self.attributes['label'].columns).title())
def _apply_inferred_index(self):
"""Configure chart when labels are provided as index instead of as kwarg."""
# try to infer grouping vs stacking labels
if (self.attributes['label'].columns is None and
self.values.selection is not None):
if self.attributes['stack'].columns is not None:
special_column = 'unity'
else:
special_column = 'index'
self._data['label'] = special_column
self.attributes['label'].setup(data=ColumnDataSource(self._data.df),
columns=special_column)
self.xlabel = ''
[docs] def set_ranges(self):
"""Push the Bar data into the ColumnDataSource and calculate
the proper ranges.
"""
x_items = self.attributes['label'].items
if x_items is None:
x_items = ''
x_labels = []
# Items are identified by tuples. If the tuple has a single value,
# we unpack it
for item in x_items:
item = self._get_label(item)
x_labels.append(str(item))
self.x_range = FactorRange(factors=x_labels)
y_shift = abs(0.1 * ((self.min_height + self.max_height) / 2))
if self.min_height < 0:
start = self.min_height - y_shift
else:
start = 0.0
if self.max_height > 0:
end = self.max_height + y_shift
else:
end = 0.0
self.y_range = Range1d(start=start, end=end)
[docs] def yield_renderers(self):
"""Use the rect glyphs to display the bars.
Takes reference points from data loaded at the ColumnDataSource.
"""
kwargs = self.get_extra_args()
attrs = self.collect_attr_kwargs()
for group in self._data.groupby(**self.attributes):
glyph_kwargs = self.get_group_kwargs(group, attrs)
group_kwargs = kwargs.copy()
group_kwargs.update(glyph_kwargs)
props = self.glyph.properties().difference(set(['label']))
# make sure we always pass the color and line color
for k in ['color', 'line_color']:
group_kwargs[k] = group[k]
# TODO(fpliger): we shouldn't need to do this to ensure we don't
# have extra kwargs... this is needed now because
# of label, group and stack being "special"
for k in set(group_kwargs):
if k not in props:
group_kwargs.pop(k)
bg = self.glyph(label=group.label,
x_label=self._get_label(group['label']),
values=group.data[self.values.selection].values,
agg=stats[self.agg](),
width=self.bar_width,
fill_alpha=self.fill_alpha,
stack_label=self._get_label(group['stack']),
dodge_label=self._get_label(group['group']),
**group_kwargs)
self.add_glyph(group, bg)
if self._perform_stack:
Stack().apply(self.comp_glyphs)
if self._perform_group:
Dodge().apply(self.comp_glyphs)
# a higher level function of bar chart is to keep track of max height of all bars
self.max_height = max([renderer.y_max for renderer in self.comp_glyphs])
self.min_height = min([renderer.y_min for renderer in self.comp_glyphs])
for renderer in self.comp_glyphs:
for sub_renderer in renderer.renderers:
yield sub_renderer
@help(BarBuilder)
[docs]def Bar(data, label=None, values=None, color=None, stack=None, group=None, agg="sum",
xscale="categorical", yscale="linear", xgrid=False, ygrid=True,
continuous_range=None, **kw):
""" Create a Bar chart using :class:`BarBuilder <bokeh.charts.builders.bar_builder.BarBuilder>`
render the geometry from values, cat and stacked.
Args:
data (:ref:`userguide_charts_data_types`): the data
source for the chart.
label (list(str) or str, optional): list of string representing the categories.
(Defaults to None)
values (str, optional): iterable 2d representing the data series
values matrix.
color (str or list(str) or `~bokeh.charts._attributes.ColorAttr`): string color,
string column name, list of string columns or a custom `ColorAttr`,
which replaces the default `ColorAttr` for the builder.
stack (list(str) or str, optional): columns to use for stacking.
(Defaults to False, so grouping is assumed)
group (list(str) or str, optional): columns to use for grouping.
agg (str): how to aggregate the `values`. (Defaults to 'sum', or only label is
provided, then performs a `count`)
continuous_range(Range1d, optional): Custom continuous_range to be
used. (Defaults to None)
In addition to the parameters specific to this chart,
:ref:`userguide_charts_defaults` are also accepted as keyword parameters.
Returns:
:class:`Chart`: includes glyph renderers that generate bars
Examples:
.. bokeh-plot::
:source-position: above
from bokeh.charts import Bar, output_file, show
from bokeh.layouts import row
# best support is with data in a format that is table-like
data = {
'sample': ['1st', '2nd', '1st', '2nd', '1st', '2nd'],
'interpreter': ['python', 'python', 'pypy', 'pypy', 'jython', 'jython'],
'timing': [-2, 5, 12, 40, 22, 30]
}
# x-axis labels pulled from the interpreter column, stacking labels from sample column
bar = Bar(data, values='timing', label='interpreter', stack='sample', agg='mean',
title="Python Interpreter Sampling", legend='top_right', plot_width=400)
# table-like data results in reconfiguration of the chart with no data manipulation
bar2 = Bar(data, values='timing', label=['interpreter', 'sample'],
agg='mean', title="Python Interpreters", plot_width=400)
output_file("stacked_bar.html")
show(row(bar, bar2))
"""
if continuous_range and not isinstance(continuous_range, Range1d):
raise ValueError(
"continuous_range must be an instance of bokeh.models.ranges.Range1d"
)
if label is not None and values is None:
kw['label_only'] = True
if (agg == 'sum') or (agg == 'mean'):
agg = 'count'
values = label
# The continuous_range is the y_range (until we implement HBar charts)
y_range = continuous_range
kw['label'] = label
kw['values'] = values
kw['color'] = color
kw['stack'] = stack
kw['group'] = group
kw['agg'] = agg
kw['xscale'] = xscale
kw['yscale'] = yscale
kw['xgrid'] = xgrid
kw['ygrid'] = ygrid
kw['y_range'] = y_range
chart = create_and_build(BarBuilder, data, **kw)
# hide x labels if there is a single value, implying stacking only
if len(chart.x_range.factors) == 1 and not label:
chart.below[0].visible = False
return chart