Source code for bokeh.util.serialization

"""
Functions for helping with serialization and deserialization of
Bokeh objects.

Certain NunPy array dtypes can be serialized to a binary format for
performance and efficiency. The list of supported dtypes is:

%s

"""
from __future__ import absolute_import

import base64

from six import iterkeys

from .dependencies import import_optional

is_numpy = None

try:
    import numpy as np
    is_numpy = True
    BINARY_ARRAY_TYPES = set([
        np.dtype(np.float32),
        np.dtype(np.float64),
        np.dtype(np.uint8),
        np.dtype(np.int8),
        np.dtype(np.uint16),
        np.dtype(np.int16),
        np.dtype(np.uint32),
        np.dtype(np.int32),
    ])
except ImportError:
    is_numpy = False
    BINARY_ARRAY_TYPES = set()

__doc__ = __doc__ % ("\n".join("* ``np." + str(x) + "``" for x in BINARY_ARRAY_TYPES))

pd = import_optional('pandas')

import logging
log = logging.getLogger(__name__)

_simple_id = 1000

[docs]def make_id(): """ Return a new unique ID for a Bokeh object. Normally this function will return UUIDs to use for identifying Bokeh objects. This is especally important for Bokeh objects stored on a Bokeh server. However, it is convenient to have more human-readable IDs during development, so this behavior can be overridden by setting the environment variable ``BOKEH_SIMPLE_IDS=yes``. """ global _simple_id import uuid from ..settings import settings if settings.simple_ids(False): _simple_id += 1 new_id = _simple_id else: new_id = uuid.uuid4() return str(new_id)
[docs]def array_encoding_disabled(array): """ Determine whether an array may be binary encoded. The NumPy array dtypes that can be encoded are: %s Args: array (np.ndarray) : the array to check Returns: bool """ # disable binary encoding for non-supported dtypes return array.dtype not in BINARY_ARRAY_TYPES
array_encoding_disabled.__doc__ = array_encoding_disabled.__doc__ % ("\n ".join("* ``np." + str(x) + "``" for x in BINARY_ARRAY_TYPES))
[docs]def transform_array(array, force_list=False): """ Transform a NumPy arrays into serialized format Converts un-serializable dtypes and returns JSON serializable format Args: array (np.ndarray) : a NumPy array to be transformed force_list (bool, optional) : whether to only output to standard lists This function can encode some dtypes using a binary encoding, but setting this argument to True will override that and cause only standard Python lists to be emitted. (default: False) Returns: JSON """ # Check for astype failures (putative Numpy < 1.7) try: dt2001 = np.datetime64('2001') legacy_datetime64 = (dt2001.astype('int64') == dt2001.astype('datetime64[ms]').astype('int64')) except AttributeError as e: if e.args == ("'module' object has no attribute 'datetime64'",): import sys # for compatibility with PyPy that doesn't have datetime64 if 'PyPy' in sys.version: legacy_datetime64 = False pass else: raise e else: raise e # not quite correct, truncates to ms.. if array.dtype.kind == 'M': if legacy_datetime64: if array.dtype == np.dtype('datetime64[ns]'): array = array.astype('int64') / 10**6.0 else: array = array.astype('datetime64[us]').astype('int64') / 1000. elif array.dtype.kind == 'm': array = array.astype('timedelta64[us]').astype('int64') / 1000. return serialize_array(array, force_list)
[docs]def transform_array_to_list(array): """ Transforms a NumPy array into a list of values Args: array (np.nadarray) : the NumPy array series to transform Returns: list or dict """ if (array.dtype.kind in ('u', 'i', 'f') and (~np.isfinite(array)).any()): transformed = array.astype('object') transformed[np.isnan(array)] = 'NaN' transformed[np.isposinf(array)] = 'Infinity' transformed[np.isneginf(array)] = '-Infinity' return transformed.tolist() return array.tolist()
[docs]def transform_series(series, force_list=False): """ Transforms a Pandas series into serialized form Args: series (pd.Series) : the Pandas series to transform force_list (bool, optional) : whether to only output to standard lists This function can encode some dtypes using a binary encoding, but setting this argument to True will override that and cause only standard Python lists to be emitted. (default: False) Returns: list or dict """ vals = series.values return transform_array(vals, force_list)
[docs]def serialize_array(array, force_list=False): """ Transforms a NumPy array into serialized form. Args: array (np.ndarray) : the NumPy array to transform force_list (bool, optional) : whether to only output to standard lists This function can encode some dtypes using a binary encoding, but setting this argument to True will override that and cause only standard Python lists to be emitted. (default: False) Returns: list or dict """ if isinstance(array, np.ma.MaskedArray): array = array.filled(np.nan) # Set masked values to nan if (array_encoding_disabled(array) or force_list): return transform_array_to_list(array) if not array.flags['C_CONTIGUOUS']: array = np.ascontiguousarray(array) return encode_base64_dict(array)
[docs]def traverse_data(obj, is_numpy=is_numpy, use_numpy=True): """ Recursively traverse an object until a flat list is found. If NumPy is available, the flat list is converted to a numpy array and passed to transform_array() to handle ``nan``, ``inf``, and ``-inf``. Otherwise, iterate through all items, converting non-JSON items Args: obj (list) : a list of values or lists is_numpy (bool, optional): Whether NumPy is availanble (default: True if NumPy is importable) use_numpy (bool, optional) toggle NumPy as a dependency for testing This argument is only useful for testing (default: True) """ is_numpy = is_numpy and use_numpy if is_numpy and all(isinstance(el, np.ndarray) for el in obj): return [transform_array(el) for el in obj] obj_copy = [] for item in obj: if isinstance(item, (list, tuple)): obj_copy.append(traverse_data(item)) elif isinstance(item, float): if np.isnan(item): item = 'NaN' elif np.isposinf(item): item = 'Infinity' elif np.isneginf(item): item = '-Infinity' obj_copy.append(item) else: obj_copy.append(item) return obj_copy
[docs]def transform_column_source_data(data): """ Transform ColumnSourceData data to a serialized format Args: data (dict) : the mapping of names to data columns to transform Returns: JSON compatible dict """ data_copy = {} for key in iterkeys(data): if pd and isinstance(data[key], (pd.Series, pd.Index)): data_copy[key] = transform_series(data[key]) elif isinstance(data[key], np.ndarray): data_copy[key] = transform_array(data[key]) else: data_copy[key] = traverse_data(data[key]) return data_copy
[docs]def encode_base64_dict(array): ''' Encode a NumPy array using base64: The encoded format is a dict with the following structure: .. code:: python { '__ndarray__' : << base64 encoded array data >>, 'shape' : << array shape >>, 'dtype' : << dtype name >>, } Args: array (np.ndarray) : an array to encode Returns: dict ''' return { '__ndarray__' : base64.b64encode(array.data).decode('utf-8'), 'shape' : array.shape, 'dtype' : array.dtype.name }
[docs]def decode_base64_dict(data): """ Decode a base64 encoded array into a NumPy array. Args: data (dict) : encoded array data to decode Data should have the format encoded by :func:`encode_base64_dict`. Returns: np.ndarray """ b64 = base64.b64decode(data['__ndarray__']) array = np.fromstring(b64, dtype=data['dtype']) if len(data['shape']) > 1: array = array.reshape(data['shape']) return array