Source code for bokeh.core.validation.decorators
''' Provide decorators help with define Bokeh validation checks.
'''
from __future__ import absolute_import
from functools import partial
from six import string_types
def _validator(code_or_name, validator_type):
''' Internal shared implementation to handle both error and warning
validation checks.
Args:
code code_or_name (int or str) : a defined error code or custom message
validator_type (str) : either "error" or "warning"
Returns:
validation decorator
'''
if validator_type == "error":
from .errors import codes
from .errors import EXT
elif validator_type == "warning":
from .warnings import codes
from .warnings import EXT
else:
pass # TODO (bev) ValueError?
def decorator(func):
def wrapper(*args, **kw):
extra = func(*args, **kw)
if extra is None: return []
if isinstance(code_or_name, string_types):
code = EXT
name = codes[code][0] + ":" + code_or_name
else:
code = code_or_name
name = codes[code][0]
text = codes[code][1]
return [(code, name, text, extra)]
wrapper.validator_type = validator_type
return wrapper
return decorator
_error = partial(_validator, validator_type="error")
[docs]def error(code_or_name):
''' Decorator to mark a validator method for a Bokeh error condition
Args:
code_or_name (int or str) : a code from ``bokeh.validation.errors`` or a string label for a custom check
Returns:
callable : decorator for Bokeh model methods
The function that is decoratate should have a name that starts with
``_check``, and return a string message in case a bad condition is
detected, and ``None`` if no bad condition is detected.
Examples:
The first example uses a numeric code for a standard error provided in
``bokeh.validation.errors``. This usage is primarily of interest to Bokeh
core developers.
.. code-block:: python
from bokeh.validation.errors import REQUIRED_RANGES
@error(REQUIRED_RANGES)
def _check_no_glyph_renderers(self):
if bad_condition: return "message"
The second example shows how a custom warning check can be implemented by
passing an arbitrary string label to the decorator. This usage is primarily
of interest to anyone extending Bokeh with their own custom models.
.. code-block:: python
@error("MY_CUSTOM_WARNING")
def _check_my_custom_warning(self):
if bad_condition: return "message"
'''
return _error(code_or_name)
_warning = partial(_validator, validator_type="warning")
[docs]def warning(code_or_name):
''' Decorator to mark a validator method for a Bokeh error condition
Args:
code_or_name (int or str) : a code from ``bokeh.validation.errors`` or a string label for a custom check
Returns:
callable : decorator for Bokeh model methods
The function that is decoratate should have a name that starts with
``_check``, and return a string message in case a bad condition is
detected, and ``None`` if no bad condition is detected.
Examples:
The first example uses a numeric code for a standard warning provided in
``bokeh.validation.warnings``. This usage is primarily of interest to Bokeh
core developers.
.. code-block:: python
from bokeh.validation.warnings import NO_DATA_RENDERERS
@warning(NO_DATA_RENDERERS)
def _check_no_glyph_renderers(self):
if bad_condition: return "message"
The second example shows how a custom warning check can be implemented by
passing an arbitrary string label to the decorator. This usage is primarily
of interest to anyone extending Bokeh with their own custom models.
.. code-block:: python
@warning("MY_CUSTOM_WARNING")
def _check_my_custom_warning(self):
if bad_condition: return "message"
'''
return _warning(code_or_name)