Source code for bokeh.driving

''' Provide a set of decorators useful for repeatedly updating a
a function parameter in a specified way each time the function is
called.

These decorators can be especially useful in conjunction with periodic
callbacks in a Bokeh server application.

Example:

    As an example, consider the ``bounce`` forcing function, which
    advances a sequence forwards and backwards:

    .. code-block:: python

        from bokeh.driving import bounce

        @bounce([0, 1, 2])
        def update(i):
            print(i)

    If this function is repeatedly called, it will print the following
    sequence on standard out:

    .. code-block:: none

        0 1 2 2 1 0 0 1 2 2 1 ...

'''
from __future__ import absolute_import

from functools import partial

[docs]def sine(w, A=1, phi=0, offset=0): ''' Return a driver function that can advance a sequence of sine values. .. code-block:: none value = A * sin(w*i + phi) + offset Args: w (float) : a frequency for the sine driver A (float) : an amplitude for the sine driver phi (float) : a phase offset to start the sine driver with offset (float) : a global offset to add to the driver values ''' from math import sin def f(i): return A * sin(w*i + phi) + offset return partial(_force, sequence=_advance(f))
[docs]def cosine(w, A=1, phi=0, offset=0): ''' Return a driver function that can advance a sequence of cosine values. .. code-block:: none value = A * cos(w*i + phi) + offset Args: w (float) : a frequency for the cosine driver A (float) : an amplitude for the cosine driver phi (float) : a phase offset to start the cosine driver with offset (float) : a global offset to add to the driver values ''' from math import cos def f(i): return A * cos(w*i + phi) + offset return partial(_force, sequence=_advance(f))
[docs]def linear(m=1, b=0): ''' Return a driver function that can advance a sequence of linear values. .. code-block:: none value = m * i + b Args: m (float) : a slope for the linear driver x (float) : an offset for the linear driver ''' def f(i): return m * i + b return partial(_force, sequence=_advance(f))
[docs]def bounce(sequence): ''' Return a driver function that can advance a "bounced" sequence of values. .. code-block:: none seq = [0, 1, 2, 3] # bounce(seq) => [0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, ...] Args: sequence (seq) : a sequence of values for the driver to bounce ''' N = len(sequence) def f(i): div, mod = divmod(i, N) if div % 2 == 0: return sequence[mod] else: return sequence[N-mod-1] return partial(_force, sequence=_advance(f))
[docs]def repeat(sequence): ''' Return a driver function that can advance a repeated of values. .. code-block:: none seq = [0, 1, 2, 3] # repeat(seq) => [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, ...] Args: sequence (seq) : a sequence of values for the driver to bounce ''' N = len(sequence) def f(i): return sequence[i%N] return partial(_force, sequence=_advance(f))
[docs]def count(): ''' Return a driver function that can advance a simple count. ''' return partial(_force, sequence=_advance(lambda x: x))
def _force(f, sequence): def wrapper(*args, **kw): f(next(sequence)) return wrapper def _advance(f): i = 0 while True: yield f(i) i += 1