The Bokeh logo
  • First steps
  • User guide
  • Gallery
  • Reference
  • Contribute
  • Releases
  • Tutorial
  • Community
  • Introduction
  • Basic plotting
    • Scatter plots
    • Lines and curves
    • Data sources
    • Ranges and axes
    • Bar charts
    • Area glyphs
    • Grids and layouts
    • Annotations
  • Appearance
    • General visual properties
    • Styling plot elements
    • Mathematical notation
    • Themes
    • Styling DOM elements
  • Topic guides
    • Images and raster data
    • Contour plots
    • Hex tiles
    • Categorical plots
    • Hierarchical data
    • Geographical data
    • Network graphs
    • Timeseries plots
    • Pie and donut charts
    • Statistical plots
  • Interaction
    • Plot tools
    • Linked behavior
    • Interactive legends
    • Widgets and DOM elements
    • JavaScript callbacks
    • Python callbacks
    • Tooltips
  • Output options
    • Jupyter
    • Web pages
    • PNG and SVG export
    • WebGL acceleration
  • Bokeh server
    • Server introduction
    • Building applications
    • Command line options
    • Bokeh server APIs
    • Deployment scenarios
  • Advanced usage
    • Third-party integrations
    • Custom extensions
    • BokehJS

Output options#

You have a wide range of options to display and export Bokeh visualizations, including embedding in Jupyter notebooks, web pages, or as static files.

Jupyter

Web pages

PNG and SVG export

WebGL acceleration

previous

Tooltips

next

Jupyter

Project
  • Roadmap
  • Team
  • Branding
Documentation
  • User Guide
  • Gallery
  • Reference Guide
Hands On
  • Tutorials
  • Demos
  • Support
Contribute
  • GitHub
  • Contributor Guide
  • Sponsor

Bokeh is a fiscally sponsored project of NumFOCUS, a nonprofit dedicated to supporting the open-source scientific computing community. Donations help pay for cloud hosting costs, travel, and other project needs.

©2023 Bokeh Contributors. The website content uses the BSD License and is covered by the Bokeh Code of Conduct.

Donate