Adding Interactions

Linking Plots

It’s often useful to link plots to add connected interactivity between plots. This section shows an easy way to do it using the bokeh.plotting interface.

Linked Panning

It’s often desired to link pan or zooming actions across many plots. All that is needed to enable this feature is to share range objects between figure() calls.

from bokeh.plotting import figure, gridplot, output_file, show

output_file("panning.html")

x = list(range(11))
y0 = x
y1 = [10-xx for xx in x]
y2 = [abs(xx-5) for xx in x]

# create a new plot
s1 = figure(width=250, plot_height=250, title=None)
s1.circle(x, y0, size=10, color="navy", alpha=0.5)

# create a new plot and share both ranges
s2 = figure(width=250, height=250, x_range=s1.x_range, y_range=s1.y_range, title=None)
s2.triangle(x, y1, size=10, color="firebrick", alpha=0.5)

# create a new plot and share only one range
s3 = figure(width=250, height=250, x_range=s1.x_range, title=None)
s3.square(x, y2, size=10, color="olive", alpha=0.5)

p = gridplot([[s1, s2, s3]], toolbar_location=None)

# show the results
show(p)

Now you have learned how to link panning between multiple plots with the bokeh.plotting interface.

Linked Brushing

Linked brushing in Bokeh is expressed by sharing data sources between glyph renderers. This is all Bokeh needs to understand that selections acted on one glyph must pass to all other glyphs that share that same source.

The following code shows an example of linked brushing between circle glyphs on two different figure() calls.

from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, gridplot, output_file, show

output_file("brushing.html")

x = list(range(-20, 21))
y0 = [abs(xx) for xx in x]
y1 = [xx**2 for xx in x]

# create a column data source for the plots to share
source = ColumnDataSource(data=dict(x=x, y0=y0, y1=y1))

TOOLS = "box_select,lasso_select,help"

# create a new plot and add a renderer
left = figure(tools=TOOLS, width=300, height=300, title=None)
left.circle('x', 'y0', source=source)

# create another new plot and add a renderer
right = figure(tools=TOOLS, width=300, height=300, title=None)
right.circle('x', 'y1', source=source)

p = gridplot([[left, right]])

show(p)

                Now you have learned how to link brushing between plots.

                Adding Widgets

                Bokeh provides a simple default set of widgets, largely based off the Bootstrap JavaScript library. In the future, it will be possible for users to wrap and use other widget libararies, or their own custom widgets. By themselves, most widgets are not useful. There are two ways to use widgets to drive interactions:

                • Use the CustomJS callback (see below). This will work in static HTML documents.
                • Use the bokeh-server and set up event handlers with .on_change.

                The current value of interactive widgets is available from the .value attribute.

                Button

                Bokeh provides a simple Button:

                from bokeh.models.widgets import Button
                from bokeh.io import output_file, show, vform
                
                output_file("button.html")
                
                button = Button(label="Foo", type="success")
                
                show(vform(button))
                

                Checkbox Button Group

                Bokeh also provides a checkbox button group, that can have multiple options selected simultaneously:

                from bokeh.models.widgets import CheckboxButtonGroup
                from bokeh.io import output_file, show, vform
                
                output_file("checkbox_button_group.html")
                
                checkbox_button_group = CheckboxButtonGroup(
                        labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
                
                show(vform(checkbox_button_group))
                

                Checkbox Group

                A standard checkbox:

                from bokeh.models.widgets import CheckboxGroup
                from bokeh.io import output_file, show, vform
                
                output_file("checkbox_group.html")
                
                checkbox_group = CheckboxGroup(
                        labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
                
                show(vform(checkbox_group))
                

                Data Table

                Bokeh provides a sophisticated data table widget based on SlickGrid. Note that since the table is configured with a data source object, any plots that share this data source will automatically have selections linked between the plot and the table (even in static HTML documents).

                Date
                Downloads
                2014 Mar 1
                69
                2014 Mar 2
                94
                2014 Mar 3
                61
                2014 Mar 4
                63
                2014 Mar 5
                16
                2014 Mar 6
                36
                2014 Mar 7
                52
                2014 Mar 8
                73
                2014 Mar 9
                65
                2014 Mar 10
                8
                from datetime import date
                from random import randint
                
                from bokeh.models import ColumnDataSource
                from bokeh.models.widgets import DataTable, DateFormatter, TableColumn
                from bokeh.io import output_file, show, vform
                
                output_file("data_table.html")
                
                data = dict(
                        dates=[date(2014, 3, i+1) for i in range(10)],
                        downloads=[randint(0, 100) for i in range(10)],
                    )
                source = ColumnDataSource(data)
                
                columns = [
                        TableColumn(field="dates", title="Date", formatter=DateFormatter()),
                        TableColumn(field="downloads", title="Downloads"),
                    ]
                data_table = DataTable(source=source, columns=columns, width=400, height=280)
                
                show(vform(data_table))
                

                MultiSelect

                A multi-select widget to present multiple available options:

                Warning

                MultiSelect is currently broken. See issue 2495

                from bokeh.models.widgets import MultiSelect
                from bokeh.io import output_file, show, vform
                
                output_file("multi_select.html")
                
                multi_select = MultiSelect(title="Option:", value=["foo", "quux"],
                                           options=["foo", "bar", "baz", "quux"])
                
                show(vform(multi_select))
                

                Radio Button Group

                A radio button group can have at most one selected button at at time:

                from bokeh.models.widgets import RadioButtonGroup
                from bokeh.io import output_file, show, vform
                
                output_file("radio_button_group.html")
                
                radio_button_group = RadioButtonGroup(
                        labels=["Option 1", "Option 2", "Option 3"], active=0)
                
                show(vform(radio_button_group))
                

                Radio Group

                A radio group uses standard radio button appearance:

                from bokeh.models.widgets import RadioGroup
                from bokeh.io import output_file, show, vform
                
                output_file("radio_group.html")
                
                radio_group = RadioGroup(
                        labels=["Option 1", "Option 2", "Option 3"], active=0)
                
                show(vform(radio_group))
                

                Select

                A single selection widget:

                from bokeh.models.widgets import Select
                from bokeh.io import output_file, show, vform
                
                output_file("select.html")
                
                select = Select(title="Option:", value="foo", options=["foo", "bar", "baz", "quux"])
                
                show(vform(select))
                

                Slider

                The Bokeh slider can be configured with start and end values, a step size, an initial value and a title:

                from bokeh.models.widgets import Slider
                from bokeh.io import output_file, show, vform
                
                output_file("slider.html")
                
                slider = Slider(start=0, end=10, value=1, step=.1, title="Stuff")
                
                show(vform(slider))
                

                Tab Panes

                Tab panes allow multiple plots or layouts to be show in selectable tabs:

                                from bokeh.models.widgets import Panel, Tabs
                                from bokeh.io import output_file, show
                                from bokeh.plotting import figure
                                
                                output_file("slider.html")
                                
                                p1 = figure(plot_width=300, plot_height=300)
                                p1.circle([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], size=20, color="navy", alpha=0.5)
                                tab1 = Panel(child=p1, title="circle")
                                
                                p2 = figure(plot_width=300, plot_height=300)
                                p2.line([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], line_width=3, color="navy", alpha=0.5)
                                tab2 = Panel(child=p2, title="line")
                                
                                tabs = Tabs(tabs=[ tab1, tab2 ])
                                
                                show(tabs)
                                

                                TextInput

                                A widget for collecting a line of text from a user:

                                from bokeh.models.widgets import TextInput
                                from bokeh.io import output_file, show, vform
                                
                                output_file("text_input.html")
                                
                                text_input = TextInput(value="default", title="Label:")
                                
                                show(vform(text_input))
                                

                                Toggle Button

                                The toggle button holds an on/off state:

                                from bokeh.models.widgets import Toggle
                                from bokeh.io import output_file, show, vform
                                
                                output_file("toggle.html")
                                
                                toggle = Toggle(label="Foo", type="success")
                                
                                show(vform(toggle))
                                

                                Defining Callbacks

                                Bokeh exposes an increasing number of callbacks that can be specified from the Python layer that results in an action on the javascript level without the need of bokeh-server.

                                OpenURL

                                Opening an URL when users click on a glyph (for instance a circle marker) is a very popular feature. Bokeh lets users enable this feature by exposing an OpenURL callback object that can be passed to a Tap tool in order to have that action called whenever the users clicks on the glyph.

                                The following code shows how to use the OpenURL action combined with a TapTool to open an url whenever the user clicks on a circle.

                                from bokeh.models import ColumnDataSource, OpenURL, TapTool
                                from bokeh.plotting import figure, output_file, show
                                
                                output_file("openurl.html")
                                
                                p = figure(plot_width=400, plot_height=400,
                                           tools="tap", title="Click the Dots")
                                
                                source = ColumnDataSource(data=dict(
                                    x=[1, 2, 3, 4, 5],
                                    y=[2, 5, 8, 2, 7],
                                    color=["navy", "orange", "olive", "firebrick", "gold"]
                                    ))
                                
                                p.circle('x', 'y', color='color', size=20, source=source)
                                
                                url = "http://www.colors.commutercreative.com/@color/"
                                taptool = p.select(type=TapTool)
                                taptool.callback = OpenURL(url=url)
                                
                                show(p)
                                

                                              Now you have learned how to open an URL when the user clicks on a glyph.

                                              CustomJS for Widgets

                                              Bokeh lets you express even more advanced callbacks that must be called on the Javascript side in order to add custom logic and interactivity when a widget is used. For instance, we may want to change the data of a plot when a user clicks on a button or changes a slider Widget.

                                              Custom callbacks like these can be set using a CustomJS object and passing it as the callback argument to a Widget object.

                                              The code below shows an example of CustomJS set on a slider Widget that changes the source of a plot when the slider is used.

                                              from bokeh.io import vform
                                              from bokeh.models import CustomJS, ColumnDataSource, Slider
                                              from bokeh.plotting import figure, output_file, show
                                              
                                              output_file("callback.html")
                                              
                                              x = [x*0.005 for x in range(0, 200)]
                                              y = x
                                              
                                              source = ColumnDataSource(data=dict(x=x, y=y))
                                              
                                              plot = figure(plot_width=400, plot_height=400)
                                              plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)
                                              
                                              callback = CustomJS(args=dict(source=source), code="""
                                                      var data = source.get('data');
                                                      var f = cb_obj.get('value')
                                                      x = data['x']
                                                      y = data['y']
                                                      for (i = 0; i < x.length; i++) {
                                                          y[i] = Math.pow(x[i], f)
                                                      }
                                                      source.trigger('change');
                                                  """)
                                              
                                              slider = Slider(start=0.1, end=4, value=1, step=.1, title="power", callback=callback)
                                              
                                              layout = vform(slider, plot)
                                              
                                              show(layout)
                                              

                                                      CustomJS for Tools

                                                      Bokeh allows for some tool events to trigger custom Javascript callbacks that have access to the tool’s attributes. Below, a callback on the BoxSelectTool uses the selection box dimensions (accessed in the geometry field of the cb_data object that is injected into the Callback code attribute), in order to add a Rect glyph to the plot with identical dimensions.

                                                      from bokeh.models import CustomJS, ColumnDataSource, BoxSelectTool, Range1d, Rect
                                                      from bokeh.plotting import figure, output_file, show
                                                      
                                                      output_file("boxselecttool_callback.html")
                                                      
                                                      source = ColumnDataSource(data=dict(x=[], y=[], width=[], height=[]))
                                                      
                                                      callback = CustomJS(args=dict(source=source), code="""
                                                              // get data source from Callback args
                                                              var data = source.get('data');
                                                      
                                                              /// get BoxSelectTool dimensions from cb_data parameter of Callback
                                                              var geometry = cb_data['geometry'];
                                                      
                                                              /// calculate Rect attributes
                                                              var width = geometry['x1'] - geometry['x0'];
                                                              var height = geometry['y1'] - geometry['y0'];
                                                              var x = geometry['x0'] + width/2;
                                                              var y = geometry['y0'] + height/2;
                                                      
                                                              /// update data source with new Rect attributes
                                                              data['x'].push(x);
                                                              data['y'].push(y);
                                                              data['width'].push(width);
                                                              data['height'].push(height);
                                                      
                                                              // trigger update of data source
                                                              source.trigger('change');
                                                          """)
                                                      
                                                      box_select = BoxSelectTool(callback=callback)
                                                      
                                                      p = figure(plot_width=400,
                                                                 plot_height=400,
                                                                 tools=[box_select],
                                                                 title="Select Below",
                                                                 x_range=Range1d(start=0.0, end=1.0),
                                                                 y_range=Range1d(start=0.0, end=1.0))
                                                      
                                                      rect = Rect(x='x',
                                                                  y='y',
                                                                  width='width',
                                                                  height='height',
                                                                  fill_alpha=0.3,
                                                                  fill_color='#009933')
                                                      
                                                      p.add_glyph(source, rect, selection_glyph=rect, nonselection_glyph=rect)
                                                      show(p)
                                                      

                                                                    CustomJS for Selections

                                                                    Bokeh also provides the means to specify the same kind of callback to be executed whenever a selection changes. As a simple demonstration, the example below simply copies selected points on the first plot to the second. However, more sophisticated actions and computations are easily constructed in a similar way.

                                                                    from random import random
                                                                    from bokeh.models import CustomJS, ColumnDataSource
                                                                    from bokeh.plotting import hplot, figure, output_file, show
                                                                    
                                                                    output_file("callback.html")
                                                                    
                                                                    x = [random() for x in range(500)]
                                                                    y = [random() for y in range(500)]
                                                                    
                                                                    s1 = ColumnDataSource(data=dict(x=x, y=y))
                                                                    p1 = figure(plot_width=400, plot_height=400, tools="lasso_select", title="Select Here")
                                                                    p1.circle('x', 'y', source=s1, alpha=0.6)
                                                                    
                                                                    s2 = ColumnDataSource(data=dict(x=[], y=[]))
                                                                    p2 = figure(plot_width=400, plot_height=400, x_range=(0, 1), y_range=(0, 1),
                                                                                tools="", title="Watch Here")
                                                                    p2.circle('x', 'y', source=s2, alpha=0.6)
                                                                    
                                                                    s1.callback = CustomJS(args=dict(s2=s2), code="""
                                                                            var inds = cb_obj.get('selected')['1d'].indices;
                                                                            var d1 = cb_obj.get('data');
                                                                            var d2 = s2.get('data');
                                                                            d2['x'] = []
                                                                            d2['y'] = []
                                                                            for (i = 0; i < inds.length; i++) {
                                                                                d2['x'].push(d1['x'][inds[i]])
                                                                                d2['y'].push(d1['y'][inds[i]])
                                                                            }
                                                                            s2.trigger('change');
                                                                        """)
                                                                    
                                                                    layout = hplot(p1, p2)
                                                                    
                                                                    show(layout)
                                                                    

                                                                                                  Another more sophisticated example is shown below. It computes the average y value of any selected points (including multiple disjoint selections), and draws a line through that value.

                                                                                                  from random import random
                                                                                                  from bokeh.models import CustomJS, ColumnDataSource
                                                                                                  from bokeh.plotting import figure, output_file, show
                                                                                                  
                                                                                                  output_file("callback.html")
                                                                                                  
                                                                                                  x = [random() for x in range(500)]
                                                                                                  y = [random() for y in range(500)]
                                                                                                  color = ["navy"] * len(x)
                                                                                                  
                                                                                                  s = ColumnDataSource(data=dict(x=x, y=y, color=color))
                                                                                                  p = figure(plot_width=400, plot_height=400, tools="lasso_select", title="Select Here")
                                                                                                  p.circle('x', 'y', color='color', size=8, source=s, alpha=0.4)
                                                                                                  
                                                                                                  s2 = ColumnDataSource(data=dict(ym=[0.5, 0.5]))
                                                                                                  p.line(x=[0, 1], y='ym', color="orange", line_width=5, alpha=0.6, source=s2)
                                                                                                  
                                                                                                  s.callback = CustomJS(args=dict(s2=s2), code="""
                                                                                                          var inds = cb_obj.get('selected')['1d'].indices;
                                                                                                          var d = cb_obj.get('data');
                                                                                                          var ym = 0
                                                                                                  
                                                                                                          if (inds.length == 0) { return; }
                                                                                                  
                                                                                                          for (i = 0; i < d['color'].length; i++) {
                                                                                                              d['color'][i] = "navy"
                                                                                                          }
                                                                                                          for (i = 0; i < inds.length; i++) {
                                                                                                              d['color'][inds[i]] = "firebrick"
                                                                                                              ym += d['y'][inds[i]]
                                                                                                          }
                                                                                                  
                                                                                                          ym /= inds.length
                                                                                                          s2.get('data')['ym'] = [ym, ym]
                                                                                                  
                                                                                                          cb_obj.trigger('change');
                                                                                                          s2.trigger('change');
                                                                                                      """)
                                                                                                  
                                                                                                  show(p)
                                                                                                  

                                                                                                                CustomJS for Hover

                                                                                                                The HoverTool has a callback which comes with two pieces of built-in data: the index, and the geometry. The index is the indices of any points that the hover tool is over.

                                                                                                                Note

                                                                                                                Hovers are considered “inspections” and do not normally set the selection on a data source. In an upcoming release, it will be possible to specify an inspection_glyph that will update a glyphs appearance when it is hovered over, without the need for any callback to set the selection as is done below.

                                                                                                                from bokeh.sampledata.glucose import data
                                                                                                                (x, y) = (data.ix['2010-10-06'].index.to_series(), data.ix['2010-10-06']['glucose'])
                                                                                                                
                                                                                                                from bokeh.plotting import figure, output_file, show
                                                                                                                from bokeh.models import ColumnDataSource, Circle, HoverTool, CustomJS
                                                                                                                
                                                                                                                output_file("hover_callback.html")
                                                                                                                
                                                                                                                # Basic plot setup
                                                                                                                p = figure(width=600, height=300, x_axis_type="datetime", tools="", toolbar_location=None, title='Hover over points')
                                                                                                                p.line(x, y, line_dash="4 4", line_width=1, color='gray')
                                                                                                                
                                                                                                                # Add a circle, that is visible only when selected
                                                                                                                source = ColumnDataSource({'x': x, 'y': y})
                                                                                                                invisible_circle = Circle(x='x', y='y', fill_color='gray', fill_alpha=0.05, line_color=None, size=20)
                                                                                                                visible_circle = Circle(x='x', y='y', fill_color='firebrick', fill_alpha=0.5, line_color=None, size=20)
                                                                                                                cr = p.add_glyph(source, invisible_circle, selection_glyph=visible_circle, nonselection_glyph=invisible_circle)
                                                                                                                
                                                                                                                # Add a hover tool, that selects the circle
                                                                                                                code = "source.set('selected', cb_data['index']);"
                                                                                                                callback = CustomJS(args={'source': source}, code=code)
                                                                                                                p.add_tools(HoverTool(tooltips=None, callback=callback, renderers=[cr], mode='hline'))
                                                                                                                
                                                                                                                show(p)
                                                                                                                

                                                                                                                CustomJS for Range Update

                                                                                                                With Bokeh, ranges have a callback attribute that accept a Callback instance and execute javascript code on range updates that are triggered by tool interactions such as a box zoom, wheel scroll or pan.

                                                                                                                import numpy as np
                                                                                                                
                                                                                                                from bokeh.plotting import output_file, figure, show, hplot
                                                                                                                from bokeh.models import ColumnDataSource, CustomJS, Rect
                                                                                                                
                                                                                                                output_file('range_update_callback.html')
                                                                                                                
                                                                                                                N = 4000
                                                                                                                
                                                                                                                x = np.random.random(size=N) * 100
                                                                                                                y = np.random.random(size=N) * 100
                                                                                                                radii = np.random.random(size=N) * 1.5
                                                                                                                colors = ["#%02x%02x%02x" % (r, g, 150) for r, g in zip(np.floor(50+2*x), np.floor(30+2*y))]
                                                                                                                
                                                                                                                source = ColumnDataSource({'x': [], 'y': [], 'width': [], 'height': []})
                                                                                                                
                                                                                                                jscode="""
                                                                                                                        var data = source.get('data');
                                                                                                                        var start = range.get('start');
                                                                                                                        var end = range.get('end');
                                                                                                                        data['%s'] = [start + (end - start) / 2];
                                                                                                                        data['%s'] = [end - start];
                                                                                                                        source.trigger('change');
                                                                                                                    """
                                                                                                                
                                                                                                                p1 = figure(title='Pan and Zoom Here', x_range=(0, 100), y_range=(0, 100),
                                                                                                                            tools='box_zoom,wheel_zoom,pan,reset', plot_width=400, plot_height=400)
                                                                                                                p1.scatter(x, y, radius=radii, fill_color=colors, fill_alpha=0.6, line_color=None)
                                                                                                                
                                                                                                                p1.x_range.callback = CustomJS(
                                                                                                                        args=dict(source=source, range=p1.x_range), code=jscode % ('x', 'width'))
                                                                                                                p1.y_range.callback = CustomJS(
                                                                                                                        args=dict(source=source, range=p1.y_range), code=jscode % ('y', 'height'))
                                                                                                                
                                                                                                                p2 = figure(title='See Zoom Window Here', x_range=(0, 100), y_range=(0, 100),
                                                                                                                            tools='', plot_width=400, plot_height=400)
                                                                                                                p2.scatter(x, y, radius=radii, fill_color=colors, fill_alpha=0.6, line_color=None)
                                                                                                                rect = Rect(x='x', y='y', width='width', height='height', fill_alpha=0.1,
                                                                                                                            line_color='black', fill_color='black')
                                                                                                                p2.add_glyph(source, rect)
                                                                                                                
                                                                                                                layout = hplot(p1, p2)
                                                                                                                show(layout)