Bokeh provides a variety of ways to embed plots and data into HTML documents.
Bokeh can generate standalone HTML documents using the file_html()
function. This function can emit HTML from its own generic template,
or a template you provide. These files contain the data for the plot inline
and are completely transportable, while still providing interactive tools
(pan, zoom, etc.) for your plot. Here is an example:
from bokeh.plotting import figure
from bokeh.resources import CDN
from bokeh.embed import file_html
plot = figure()
plot.circle([1,2], [3,4])
html = file_html(plot, CDN, "my plot")
The returned HTML text can be saved to a file using standard python file operations.
Note
This is a fairly low-level, explicit way to generate an HTML file.
When using the bokeh.plotting or bokeh.charts interfaces, users will
typically call the function output_file()
in conjuction with show()
or
save()
instead.
It is also possible to ask Bokeh to return the individual components for a
inline embedding using the components()
function. This function returns a
<script>
that contains the data for your plot, together with an
accompanying <div>
tag that the plot view is loaded into. These tags
can be used in HTML documents however you like:
from bokeh.plotting import figure
from bokeh.embed import components
plot = figure()
plot.circle([1,2], [3,4])
script, div = components(plot)
The returned <script>
will look something like:
<script type="text/javascript">
$(function() {
var modelid = "fba97329-a355-499e-9252-0adc64b19d2e";
var modeltype = "Plot";
var elementid = "8ed68feb-d258-4953-9dfb-fb1c13326509";
Bokeh.logger.info("Realizing plot:")
Bokeh.logger.info(" - modeltype: Plot");
Bokeh.logger.info(" - modelid: fba97329-a355-499e-9252-0adc64b19d2e");
Bokeh.logger.info(" - elementid: 8ed68feb-d258-4953-9dfb-fb1c13326509");
var all_models = [ JSON PLOT MODELS AND DATA ARE HERE ];
Bokeh.load_models(all_models);
var model = Bokeh.Collections(modeltype).get(modelid);
var view = new model.default_view({
model: model, el: '#8ed68feb-d258-4953-9dfb-fb1c13326509'
});
Bokeh.index[modelid] = view
});
</script>
All of the data and plot objects are contained in the all_models
variable
(contents omitted here for brevity). The resulting <div>
will look
something like:
<div class="plotdiv" id="8ed68feb-d258-4953-9dfb-fb1c13326509"></div>
These two elements can be inserted or templated into your HTML text, and the script, when executed, will replace the div with the plot.
Using these components assumes that BokehJS has already been loaded, for
instance either inline in the document text, or from CDN. To load BokehJS
from CDN, add the following lines in your HTML text or template with the
appropriate version replacing x.y.z
:
<link
href="https://cdn.bokeh.org/bokeh/release/bokeh-x.y.z.min.css"
rel="stylesheet" type="text/css">
<script src="https://cdn.bokeh.org/bokeh/release/bokeh-x.y.z.min.js">
For example, to use version 0.8.2
:
<link
href="https://cdn.bokeh.org/bokeh/release/bokeh-0.8.2.min.css"
rel="stylesheet" type="text/css">
<script src="https://cdn.bokeh.org/bokeh/release/bokeh-0.8.2.min.js">
The components()
function takes either a single PlotObject, a list/tuple of
PlotObjects, or a dictionary of keys and PlotObjects. Each returns
a corresponding data structure of script and div pairs.
The following illustrates how different input types correlate to outputs:
components(plot)
#=> (script, plot_div)
components((plot_1, plot_2))
#=> (script, (plot_1_div, plot_2_div))
components({"Plot 1": plot_1, "Plot 2": plot_2})
#=> (script, {"Plot 1": plot_1_div, "Plot 2": plot_2_div})
Here’s an example of how you would use the multiple plot generator:
# scatter.py
from bokeh.plotting import figure
from bokeh.models import Range1d
from bokeh.embed import components
# create some data
x1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y1 = [0, 8, 2, 4, 6, 9, 5, 6, 25, 28, 4, 7]
x2 = [2, 5, 7, 15, 18, 19, 25, 28, 9, 10, 4]
y2 = [2, 4, 6, 9, 15, 18, 0, 8, 2, 25, 28]
x3 = [0, 1, 0, 8, 2, 4, 6, 9, 7, 8, 9]
y3 = [0, 8, 4, 6, 9, 15, 18, 19, 19, 25, 28]
# select the tools we want
TOOLS="pan,wheel_zoom,box_zoom,reset,save"
# the red and blue graphs will share this data range
xr1 = Range1d(start=0, end=30)
yr1 = Range1d(start=0, end=30)
# only the green will use this data range
xr2 = Range1d(start=0, end=30)
yr2 = Range1d(start=0, end=30)
# build our figures
p1 = figure(x_range=xr1, y_range=yr1, tools=TOOLS, plot_width=300, plot_height=300)
p1.scatter(x1, y1, size=12, color="red", alpha=0.5)
p2 = figure(x_range=xr1, y_range=yr1, tools=TOOLS, plot_width=300, plot_height=300)
p2.scatter(x2, y2, size=12, color="blue", alpha=0.5)
p3 = figure(x_range=xr2, y_range=yr2, tools=TOOLS, plot_width=300, plot_height=300)
p3.scatter(x3, y3, size=12, color="green", alpha=0.5)
# plots can be a single PlotObject, a list/tuple, or even a dictionary
plots = {'Red': p1, 'Blue': p2, 'Green': p3}
script, div = components(plots)
print(script)
print(div)
Running python scatter.py
will print out:
<script type="text/javascript">
Bokeh.$(function() {
var all_models = [ JSON PLOT MODELS AND DATA ARE HERE ]
for (idx in plots) {
var plot = plots[idx]
var model = Bokeh.Collections(plot.modeltype).get(plot.modelid);
Bokeh.logger.info('Realizing plot:')
Bokeh.logger.info(' - modeltype: ' + plot.modeltype);
Bokeh.logger.info(' - modelid: ' + plot.modelid);
Bokeh.logger.info(' - elementid: ' + plot.elementid);
var view = new model.default_view({
model: model,
el: plot.elementid
});
Bokeh.index[plot.modelid] = view;
}
});
</script>
{'Blue': '<div class="plotdiv" id="5fb494f2-e2cb-4eb8-8ec7-11b38143ea30"></div>', 'Green': '<div class="plotdiv" id="f37808b2-e1cc-494e-a126-32f979e2a60d"></div>', 'Red': '<div class="plotdiv" id="a30e4c01-290a-4a19-9b36-c242c53cba8b"></div>'}
Then inserting the script and div elements into this boilerplate:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Bokeh Scatter Plots</title>
<link rel="stylesheet" href="https://cdn.bokeh.org/bokeh/release/bokeh-0.9.0.min.css" type="text/css" />
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-0.9.0.min.js"></script>
<!-- COPY/PASTE SCRIPT HERE -->
</head>
<body>
<!-- INSERT DIVS HERE -->
</body>
</html>
You can see an example by running:
python /bokeh/examples/embed/embed_multiple.py
Bokeh can also generate <div>
tags suitable for inline display in the
IPython notebook using the notebook_div()
function:
from bokeh.plotting import figure
from bokeh.embed import notebook_div
plot = figure()
plot.circle([1,2], [3,4])
div = notebook_div(plot)
The returned div contains the same sort of <script>
and <div>
that
the components()
function above returns.
Note
This is a fairly low-level, explicit way to generate an IPython
notebook div. When using the bokeh.plotting or bokeh.charts
interfaces, users will typically call the function output_notebook()
in conjunction with show()
instead.
Finally it is possible to ask Bokeh to return a <script>
tag that will
replace itself with a Bokeh plot, wherever happens to be located. The script
will also check for BokehJS and load it, if necessary, so it is possible to
embed a plot by placing this script tag alone in your document.
There are two cases:
The simplest case is to use the Bokeh server to persist your plot and data.
Additionally, the Bokeh server affords the opportunity of animated plots or
updating plots with streaming data. The autoload_server()
function accepts
a plot object and a Bokeh server Session
object. It returns a <script>
tag that will load both your plot and data from the Bokeh server.
As a concrete example, here is some simple code using autoload_server()
with a default session:
from bokeh.plotting import figure
from bokeh.embed import autoload_server
from bokeh.session import Session
from bokeh.document import Document
# alternative to these lines, bokeh.io.output_server(...)
document = Document()
session = Session()
session.use_doc('population_reveal')
session.load_document(document)
plot = figure()
plot.circle([1,2], [3,4])
script = autoload_server(plot, session)
The resulting <script>
tag that you can use to embed the plot inside
a document looks like:
<script
src="http://localhost:5006/bokeh/autoload.js/f64f7959-017d-4d1b-924e-899a61fed42b"
id="f64f7959-017d-4d1b-924e-899a61fed42b"
async="true"
data-bokeh-data="server"
data-bokeh-modelid="82ef36f7-9d58-47c8-9b0d-201947febb00"
data-bokeh-root-url="http://localhost:5006/"
data-bokeh-docid="2b4c75a2-8311-4b4d-b014-370b430d6469"
data-bokeh-docapikey="8c4e34e5-04f9-4c1c-b92f-fb1ec0d52cae"
data-bokeh-loglevel="info"
></script>
Note
To execute the code above, a Bokeh server must be running.
If you do not need or want to use the Bokeh server, then the you can use the
autoload_static()
function. This function takes the plot object you want to
display together with a resources specification and path to load a script
from. It will return a self-contained <script>
tag, together with some
JavaScript code that contains the data for your plot. This code should be
saved to the script path you provided. The <script>
tag will load this
separate script to realize your plot.
Here is how you might use autoload_static()
with a simple plot:
from bokeh.resources import CDN
from bokeh.plotting import figure
from bokeh.embed import autoload_static
plot = figure()
plot.circle([1,2], [3,4])
js, tag = autoload_static(plot, CDN, "some/path")
The resulting <script>
tag looks like:
<script
src="some/path"
id="c5339dfd-a354-4e09-bba4-466f58a574f1"
async="true"
data-bokeh-data="static"
data-bokeh-modelid="7b226555-8e16-4c29-ba2a-df2d308588dc"
data-bokeh-modeltype="Plot"
data-bokeh-loglevel="info"
></script>
The resulting JavaScript code should be saved to a file that can be reached on the server at “some/path”, from the document that has the plot embedded.
Note
In both cases the <script>
tag loads a <div>
in place, so it must
be placed under <head>
.