boxplot

< elements | back to Gallery | area_chart >

                import numpy as np
                import pandas as pd
                from bokeh.plotting import figure, show, output_file
                
                # Generate some synthetic time series for six different categories
                cats = list("abcdef")
                yy = np.random.randn(2000)
                g = np.random.choice(cats, 2000)
                for i, l in enumerate(cats):
                    yy[g == l] += i // 2
                df = pd.DataFrame(dict(score=yy, group=g))
                
                # Find the quartiles and IQR foor each category
                groups = df.groupby('group')
                q1 = groups.quantile(q=0.25)
                q2 = groups.quantile(q=0.5)
                q3 = groups.quantile(q=0.75)
                iqr = q3 - q1
                upper = q3 + 1.5*iqr
                lower = q1 - 1.5*iqr
                
                # find the outliers for each category
                def outliers(group):
                    cat = group.name
                    return group[(group.score > upper.loc[cat][0]) | (group.score < lower.loc[cat][0])]['score']
                out = groups.apply(outliers).dropna()
                
                # Prepare outlier data for plotting, we need coordinate for every outlier.
                outx = []
                outy = []
                for cat in cats:
                    # only add outliers if they exist
                    if not out.loc[cat].empty:
                        for value in out[cat]:
                            outx.append(cat)
                            outy.append(value)
                
                output_file("boxplot.html")
                
                p = figure(tools="save", background_fill="#EFE8E2", title="", x_range=cats)
                
                # If no outliers, shrink lengths of stems to be no longer than the minimums or maximums
                qmin = groups.quantile(q=0.00)
                qmax = groups.quantile(q=1.00)
                upper.score = [min([x,y]) for (x,y) in zip(list(qmax.iloc[:,0]),upper.score) ]
                lower.score = [max([x,y]) for (x,y) in zip(list(qmin.iloc[:,0]),lower.score) ]
                
                # stems
                p.segment(cats, upper.score, cats, q3.score, line_width=2, line_color="black")
                p.segment(cats, lower.score, cats, q1.score, line_width=2, line_color="black")
                
                # boxes
                p.rect(cats, (q3.score+q2.score)/2, 0.7, q3.score-q2.score,
                    fill_color="#E08E79", line_width=2, line_color="black")
                p.rect(cats, (q2.score+q1.score)/2, 0.7, q2.score-q1.score,
                    fill_color="#3B8686", line_width=2, line_color="black")
                
                # whiskers (almost-0 height rects simpler than segments)
                p.rect(cats, lower.score, 0.2, 0.01, line_color="black")
                p.rect(cats, upper.score, 0.2, 0.01, line_color="black")
                
                # outliers
                p.circle(outx, outy, size=6, color="#F38630", fill_alpha=0.6)
                
                p.xgrid.grid_line_color = None
                p.ygrid.grid_line_color = "white"
                p.grid.grid_line_width = 2
                p.xaxis.major_label_text_font_size="12pt"
                
                show(p)