unemployment

< les_mis | back to Gallery | stocks >

          inspect
          • Hover Tool
            from collections import OrderedDict
            
            import numpy as np
            
            from bokeh.plotting import ColumnDataSource, figure, show, output_file
            from bokeh.models import HoverTool
            from bokeh.sampledata.unemployment1948 import data
            
            # Read in the data with pandas. Convert the year column to string
            data['Year'] = [str(x) for x in data['Year']]
            years = list(data['Year'])
            months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]
            data = data.set_index('Year')
            
            # this is the colormap from the original plot
            colors = [
                "#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce",
                "#ddb7b1", "#cc7878", "#933b41", "#550b1d"
            ]
            
            # Set up the data for plotting. We will need to have values for every
            # pair of year/month names. Map the rate to a color.
            month = []
            year = []
            color = []
            rate = []
            for y in years:
                for m in months:
                    month.append(m)
                    year.append(y)
                    monthly_rate = data[m][y]
                    rate.append(monthly_rate)
                    color.append(colors[min(int(monthly_rate)-2, 8)])
            
            source = ColumnDataSource(
                data=dict(month=month, year=year, color=color, rate=rate)
            )
            
            output_file('unemployment.html')
            
            TOOLS = "resize,hover,save,pan,box_zoom,wheel_zoom"
            
            p = figure(title="US Unemployment (1948 - 2013)",
                x_range=years, y_range=list(reversed(months)),
                x_axis_location="above", plot_width=900, plot_height=400,
                toolbar_location="left", tools=TOOLS)
            
            p.rect("year", "month", 1, 1, source=source,
                color="color", line_color=None)
            
            p.grid.grid_line_color = None
            p.axis.axis_line_color = None
            p.axis.major_tick_line_color = None
            p.axis.major_label_text_font_size = "5pt"
            p.axis.major_label_standoff = 0
            p.xaxis.major_label_orientation = np.pi/3
            
            hover = p.select(dict(type=HoverTool))
            hover.tooltips = OrderedDict([
                ('date', '@month @year'),
                ('rate', '@rate'),
            ])
            
            show(p)      # show the plot