stocks_timeseries_chart

< step_chart | back to Gallery | density >

          from collections import OrderedDict
          
          import pandas as pd
          
          from bokeh.charts import TimeSeries, show, output_file
          
          # read in some stock data from the Yahoo Finance API
          AAPL = pd.read_csv(
              "http://ichart.yahoo.com/table.csv?s=AAPL&a=0&b=1&c=2000&d=0&e=1&f=2010",
              parse_dates=['Date'])
          MSFT = pd.read_csv(
              "http://ichart.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2000&d=0&e=1&f=2010",
              parse_dates=['Date'])
          IBM = pd.read_csv(
              "http://ichart.yahoo.com/table.csv?s=IBM&a=0&b=1&c=2000&d=0&e=1&f=2010",
              parse_dates=['Date'])
          
          xyvalues = OrderedDict(
              AAPL=AAPL['Adj Close'],
              Date=AAPL['Date'],
              MSFT=MSFT['Adj Close'],
              IBM=IBM['Adj Close'],
          )
          
          # any of the following commented are valid Bar inputs
          #xyvalues = pd.DataFrame(xyvalues)
          #lindex = xyvalues.pop('Date')
          #lxyvalues = list(xyvalues.values())
          #lxyvalues = np.array(xyvalues.values())
          
          TOOLS="resize,pan,wheel_zoom,box_zoom,reset,previewsave"
          
          output_file("stocks_timeseries.html")
          
          ts = TimeSeries(
              xyvalues, index='Date', legend=True,
              title="timeseries, pd_input", tools=TOOLS, ylabel='Stock Prices')
          
          # usage with iterable index
          #ts = TimeSeries(
          #    lxyvalues, index=lindex,
          #    title="timeseries, pd_input", ylabel='Stock Prices')
          
          show(ts)
          

          Image Preview (right click -> 'Save As' to save PNG)