< step_chart | back to Gallery | density >
from collections import OrderedDict
import pandas as pd
from bokeh.charts import TimeSeries, show, output_file
# read in some stock data from the Yahoo Finance API
AAPL = pd.read_csv(
"http://ichart.yahoo.com/table.csv?s=AAPL&a=0&b=1&c=2000&d=0&e=1&f=2010",
parse_dates=['Date'])
MSFT = pd.read_csv(
"http://ichart.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2000&d=0&e=1&f=2010",
parse_dates=['Date'])
IBM = pd.read_csv(
"http://ichart.yahoo.com/table.csv?s=IBM&a=0&b=1&c=2000&d=0&e=1&f=2010",
parse_dates=['Date'])
xyvalues = OrderedDict(
AAPL=AAPL['Adj Close'],
Date=AAPL['Date'],
MSFT=MSFT['Adj Close'],
IBM=IBM['Adj Close'],
)
# any of the following commented are valid Bar inputs
#xyvalues = pd.DataFrame(xyvalues)
#lindex = xyvalues.pop('Date')
#lxyvalues = list(xyvalues.values())
#lxyvalues = np.array(xyvalues.values())
TOOLS="resize,pan,wheel_zoom,box_zoom,reset,previewsave"
output_file("stocks_timeseries.html")
ts = TimeSeries(
xyvalues, index='Date', legend=True,
title="timeseries, pd_input", tools=TOOLS, ylabel='Stock Prices')
# usage with iterable index
#ts = TimeSeries(
# lxyvalues, index=lindex,
# title="timeseries, pd_input", ylabel='Stock Prices')
show(ts)